{"title":"对现实世界行为的认知建模以理解心理健康。","authors":"Dan-Mircea Mirea, Erik C Nook, Yael Niv","doi":"10.1016/j.tics.2025.07.009","DOIUrl":null,"url":null,"abstract":"<p><p>A core strength of computational psychiatry is its focus on theory-driven research, in which cognitive processes are precisely quantified using computational models that formalize specific theoretical mechanisms. However, the data used in these studies often come from traditional laboratory-based cognitive tasks, which have unclear ecological validity. In this review we propose that the same theoretical frameworks and computational models can be applied to real-world data such as experience sampling, passive data, and digital-behavior data (e.g., online activity such as on social media). In turn, modeling real-world data can benefit from a theory-driven computational approach to move from purely predictive to explanatory power. We illustrate these points using emerging studies and discuss the challenges and opportunities of using real-world data in computational psychiatry.</p>","PeriodicalId":49417,"journal":{"name":"Trends in Cognitive Sciences","volume":" ","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive modeling of real-world behavior for understanding mental health.\",\"authors\":\"Dan-Mircea Mirea, Erik C Nook, Yael Niv\",\"doi\":\"10.1016/j.tics.2025.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A core strength of computational psychiatry is its focus on theory-driven research, in which cognitive processes are precisely quantified using computational models that formalize specific theoretical mechanisms. However, the data used in these studies often come from traditional laboratory-based cognitive tasks, which have unclear ecological validity. In this review we propose that the same theoretical frameworks and computational models can be applied to real-world data such as experience sampling, passive data, and digital-behavior data (e.g., online activity such as on social media). In turn, modeling real-world data can benefit from a theory-driven computational approach to move from purely predictive to explanatory power. We illustrate these points using emerging studies and discuss the challenges and opportunities of using real-world data in computational psychiatry.</p>\",\"PeriodicalId\":49417,\"journal\":{\"name\":\"Trends in Cognitive Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cognitive Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tics.2025.07.009\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cognitive Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.tics.2025.07.009","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Cognitive modeling of real-world behavior for understanding mental health.
A core strength of computational psychiatry is its focus on theory-driven research, in which cognitive processes are precisely quantified using computational models that formalize specific theoretical mechanisms. However, the data used in these studies often come from traditional laboratory-based cognitive tasks, which have unclear ecological validity. In this review we propose that the same theoretical frameworks and computational models can be applied to real-world data such as experience sampling, passive data, and digital-behavior data (e.g., online activity such as on social media). In turn, modeling real-world data can benefit from a theory-driven computational approach to move from purely predictive to explanatory power. We illustrate these points using emerging studies and discuss the challenges and opportunities of using real-world data in computational psychiatry.
期刊介绍:
Essential reading for those working directly in the cognitive sciences or in related specialist areas, Trends in Cognitive Sciences provides an instant overview of current thinking for scientists, students and teachers who want to keep up with the latest developments in the cognitive sciences. The journal brings together research in psychology, artificial intelligence, linguistics, philosophy, computer science and neuroscience. Trends in Cognitive Sciences provides a platform for the interaction of these disciplines and the evolution of cognitive science as an independent field of study.