{"title":"基于典型或次优PAM的rna - crispr /Cas12a系统的塞尼卡病毒A快速视觉检测","authors":"Xinrui Zhao, Genghong Jiang, Qinyi Ruan, Yunjie Qu, Xiaoyu Yang, Yongyan Shi, Dedong Wang, Jianwei Zhou, Jue Liu, Lei Hou","doi":"10.3390/v17091264","DOIUrl":null,"url":null,"abstract":"<p><p>Senecavirus A (SVA) is an emerging pathogen responsible for vesicular lesions and neonatal mortality in swine. In the absence of effective vaccines or therapeutics, early and accurate diagnosis is essential for controlling SVA outbreaks. Although nucleic acid-based detection methods are commonly employed, there remains a pressing need for rapid, convenient, highly sensitive, and specific diagnostic tools. Here, we developed a two-pot assay combining recombinase polymerase amplification (RPA) with CRISPR/Cas12a containing crRNA targeting canonical protospacer adjacent motifs (PAMs) for simple, rapid, and visual identification of SVA in clinical samples. Subsequently, we successfully streamlined this system into a one-pot assay by selecting a specially designed crRNA targeting suboptimal PAM and integrating RPA amplification reagents and CRISPR/Cas12a detection components into a single reaction system in one tube. The developed methods exhibited diagnostic specificity, showing no cross-reactivity with four major swine viruses, while showing remarkable sensitivity with a lower detection limit of just two copies. Clinical validation in field samples using these two methods revealed perfect agreement (100% concordance) with conventional quantitative PCR (qPCR) results (sample size, <i>n</i> = 28), with both assays completing detection within 30 min. These results demonstrate that both the one-pot and two-pot RPA-CRISPR/Cas12a assays offer a reliable and efficient method for detecting SVA in this pilot study. Despite the limited sample size, the assays combine rapid reaction time with high sensitivity and specificity, showing great potential for future diagnostic applications.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474415/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid Visual Detection of Senecavirus A Based on RPA-CRISPR/Cas12a System with Canonical or Suboptimal PAM.\",\"authors\":\"Xinrui Zhao, Genghong Jiang, Qinyi Ruan, Yunjie Qu, Xiaoyu Yang, Yongyan Shi, Dedong Wang, Jianwei Zhou, Jue Liu, Lei Hou\",\"doi\":\"10.3390/v17091264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Senecavirus A (SVA) is an emerging pathogen responsible for vesicular lesions and neonatal mortality in swine. In the absence of effective vaccines or therapeutics, early and accurate diagnosis is essential for controlling SVA outbreaks. Although nucleic acid-based detection methods are commonly employed, there remains a pressing need for rapid, convenient, highly sensitive, and specific diagnostic tools. Here, we developed a two-pot assay combining recombinase polymerase amplification (RPA) with CRISPR/Cas12a containing crRNA targeting canonical protospacer adjacent motifs (PAMs) for simple, rapid, and visual identification of SVA in clinical samples. Subsequently, we successfully streamlined this system into a one-pot assay by selecting a specially designed crRNA targeting suboptimal PAM and integrating RPA amplification reagents and CRISPR/Cas12a detection components into a single reaction system in one tube. The developed methods exhibited diagnostic specificity, showing no cross-reactivity with four major swine viruses, while showing remarkable sensitivity with a lower detection limit of just two copies. Clinical validation in field samples using these two methods revealed perfect agreement (100% concordance) with conventional quantitative PCR (qPCR) results (sample size, <i>n</i> = 28), with both assays completing detection within 30 min. These results demonstrate that both the one-pot and two-pot RPA-CRISPR/Cas12a assays offer a reliable and efficient method for detecting SVA in this pilot study. Despite the limited sample size, the assays combine rapid reaction time with high sensitivity and specificity, showing great potential for future diagnostic applications.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474415/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v17091264\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Rapid Visual Detection of Senecavirus A Based on RPA-CRISPR/Cas12a System with Canonical or Suboptimal PAM.
Senecavirus A (SVA) is an emerging pathogen responsible for vesicular lesions and neonatal mortality in swine. In the absence of effective vaccines or therapeutics, early and accurate diagnosis is essential for controlling SVA outbreaks. Although nucleic acid-based detection methods are commonly employed, there remains a pressing need for rapid, convenient, highly sensitive, and specific diagnostic tools. Here, we developed a two-pot assay combining recombinase polymerase amplification (RPA) with CRISPR/Cas12a containing crRNA targeting canonical protospacer adjacent motifs (PAMs) for simple, rapid, and visual identification of SVA in clinical samples. Subsequently, we successfully streamlined this system into a one-pot assay by selecting a specially designed crRNA targeting suboptimal PAM and integrating RPA amplification reagents and CRISPR/Cas12a detection components into a single reaction system in one tube. The developed methods exhibited diagnostic specificity, showing no cross-reactivity with four major swine viruses, while showing remarkable sensitivity with a lower detection limit of just two copies. Clinical validation in field samples using these two methods revealed perfect agreement (100% concordance) with conventional quantitative PCR (qPCR) results (sample size, n = 28), with both assays completing detection within 30 min. These results demonstrate that both the one-pot and two-pot RPA-CRISPR/Cas12a assays offer a reliable and efficient method for detecting SVA in this pilot study. Despite the limited sample size, the assays combine rapid reaction time with high sensitivity and specificity, showing great potential for future diagnostic applications.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.