Qianhua He, Jun Wu, Zhilong Bian, Yuan Sun, Jingyun Ma
{"title":"猪5型腺病毒的分离及重组病毒载体平台的构建","authors":"Qianhua He, Jun Wu, Zhilong Bian, Yuan Sun, Jingyun Ma","doi":"10.3390/v17091270","DOIUrl":null,"url":null,"abstract":"<p><p>Porcine adenovirus serotype 5 (PAdV-5) is an emerging viral vector platform for veterinary vaccines; however, its genomic plasticity and essential replication elements remain incompletely characterized. This study reports the isolation and reverse genetic manipulation of a novel PAdV-5 strain (GD84) from diarrheic piglets in China. PCR screening of 167 clinical samples revealed a PAdV-5 detection rate of 38.3% (64/167), with successful isolation on ST cells after three blind passages. The complete GD84 genome is 32,620 bp in length and exhibited 99.0% nucleotide identity to the contemporary strain Ino5, but only 97.0% to the prototype HNF-70. It features an atypical GC content of 51.0% and divergent structural genes-most notably the hexon gene (89% identity to HNF-70)-suggesting altered immunogenicity. Using Red/ET recombineering, we established a rapid (less than 3 weeks) reverse genetics platform and generated four E3-modified recombinants: ΔE3-All-eGFP, ΔE3-12.5K-eGFP, ΔE3-12.5K+ORF4-eGFP, and E3-Insert-eGFP. Crucially, the ΔE3-All-eGFP construct (complete E3 deletion) failed to be rescued, while constructs preserving the 12.5K open reading frame (ORF) yielded replication-competent viruses with sustained eGFP expression over three serial passages and titers over 10<sup>7.0</sup> TCID<sub>50</sub>/mL. Fluorescence intensity was inversely correlated with genome size, as the full-length E3-Insert-eGFP virus showed reduced expression compared with the ΔE3 variants. Our work identifies the 12.5K ORF as essential for PAdV-5 replication and provides an optimized vaccine engineering platform that balances genomic payload capacity with replicative fitness.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474365/pdf/","citationCount":"0","resultStr":"{\"title\":\"Isolation of Porcine Adenovirus Serotype 5 and Construction of Recombinant Virus as a Vector Platform for Vaccine Development.\",\"authors\":\"Qianhua He, Jun Wu, Zhilong Bian, Yuan Sun, Jingyun Ma\",\"doi\":\"10.3390/v17091270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Porcine adenovirus serotype 5 (PAdV-5) is an emerging viral vector platform for veterinary vaccines; however, its genomic plasticity and essential replication elements remain incompletely characterized. This study reports the isolation and reverse genetic manipulation of a novel PAdV-5 strain (GD84) from diarrheic piglets in China. PCR screening of 167 clinical samples revealed a PAdV-5 detection rate of 38.3% (64/167), with successful isolation on ST cells after three blind passages. The complete GD84 genome is 32,620 bp in length and exhibited 99.0% nucleotide identity to the contemporary strain Ino5, but only 97.0% to the prototype HNF-70. It features an atypical GC content of 51.0% and divergent structural genes-most notably the hexon gene (89% identity to HNF-70)-suggesting altered immunogenicity. Using Red/ET recombineering, we established a rapid (less than 3 weeks) reverse genetics platform and generated four E3-modified recombinants: ΔE3-All-eGFP, ΔE3-12.5K-eGFP, ΔE3-12.5K+ORF4-eGFP, and E3-Insert-eGFP. Crucially, the ΔE3-All-eGFP construct (complete E3 deletion) failed to be rescued, while constructs preserving the 12.5K open reading frame (ORF) yielded replication-competent viruses with sustained eGFP expression over three serial passages and titers over 10<sup>7.0</sup> TCID<sub>50</sub>/mL. Fluorescence intensity was inversely correlated with genome size, as the full-length E3-Insert-eGFP virus showed reduced expression compared with the ΔE3 variants. Our work identifies the 12.5K ORF as essential for PAdV-5 replication and provides an optimized vaccine engineering platform that balances genomic payload capacity with replicative fitness.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474365/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v17091270\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091270","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Isolation of Porcine Adenovirus Serotype 5 and Construction of Recombinant Virus as a Vector Platform for Vaccine Development.
Porcine adenovirus serotype 5 (PAdV-5) is an emerging viral vector platform for veterinary vaccines; however, its genomic plasticity and essential replication elements remain incompletely characterized. This study reports the isolation and reverse genetic manipulation of a novel PAdV-5 strain (GD84) from diarrheic piglets in China. PCR screening of 167 clinical samples revealed a PAdV-5 detection rate of 38.3% (64/167), with successful isolation on ST cells after three blind passages. The complete GD84 genome is 32,620 bp in length and exhibited 99.0% nucleotide identity to the contemporary strain Ino5, but only 97.0% to the prototype HNF-70. It features an atypical GC content of 51.0% and divergent structural genes-most notably the hexon gene (89% identity to HNF-70)-suggesting altered immunogenicity. Using Red/ET recombineering, we established a rapid (less than 3 weeks) reverse genetics platform and generated four E3-modified recombinants: ΔE3-All-eGFP, ΔE3-12.5K-eGFP, ΔE3-12.5K+ORF4-eGFP, and E3-Insert-eGFP. Crucially, the ΔE3-All-eGFP construct (complete E3 deletion) failed to be rescued, while constructs preserving the 12.5K open reading frame (ORF) yielded replication-competent viruses with sustained eGFP expression over three serial passages and titers over 107.0 TCID50/mL. Fluorescence intensity was inversely correlated with genome size, as the full-length E3-Insert-eGFP virus showed reduced expression compared with the ΔE3 variants. Our work identifies the 12.5K ORF as essential for PAdV-5 replication and provides an optimized vaccine engineering platform that balances genomic payload capacity with replicative fitness.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.