Ning Wang, Xinyi Deng, Nan Zhu, Xueling Wang, Yimeng Wang, Biao Sun, Chenguang Zheng
{"title":"贝叶斯解码及其在神经系统空间记忆读出中的应用。","authors":"Ning Wang, Xinyi Deng, Nan Zhu, Xueling Wang, Yimeng Wang, Biao Sun, Chenguang Zheng","doi":"10.1088/1741-2552/ae0c3c","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial memory serves as a foundation to establish cognitive map, supporting navigation and decision-making processes across species. Essential brain regions such as the hippocampus and entorhinal cortex enable these functions through spatially tuned neurons, particularly place cells, which encode an animal's precise location. The continuous spatial trajectories are then able to be represented by temporally sequential firing of these cells at neural ensemble level. Bayesian frameworks are powerful tools for reconstructing such \"mind travel\". In this article, we focus on the principles and advances of Bayesian decoding methods for extracting spatial memory information from neural ensembles. First, we review non-recursive approaches and recursive point process filters, paying special attention to clusterless decoding strategies. We also discuss emerging approaches such as neural manifolds within Bayesian estimation. Next, we discuss the advanced application of Bayesian decoding in understanding the neuronal coding mechanisms of memory consolidation and planning, and in supporting computational model establishment and closed-loop manipulation. Finally, we discuss the limitations and challenges of recent approaches, highlighting the promising strategies that could raise the decoding efficiency and adapt the growing scale of neural data. We believe that the developing of Bayesian decoding approach would significantly benefit for techniques and applications of memory-related brain machine interface.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian decoding and its application in reading out spatial memory from neural ensembles.\",\"authors\":\"Ning Wang, Xinyi Deng, Nan Zhu, Xueling Wang, Yimeng Wang, Biao Sun, Chenguang Zheng\",\"doi\":\"10.1088/1741-2552/ae0c3c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial memory serves as a foundation to establish cognitive map, supporting navigation and decision-making processes across species. Essential brain regions such as the hippocampus and entorhinal cortex enable these functions through spatially tuned neurons, particularly place cells, which encode an animal's precise location. The continuous spatial trajectories are then able to be represented by temporally sequential firing of these cells at neural ensemble level. Bayesian frameworks are powerful tools for reconstructing such \\\"mind travel\\\". In this article, we focus on the principles and advances of Bayesian decoding methods for extracting spatial memory information from neural ensembles. First, we review non-recursive approaches and recursive point process filters, paying special attention to clusterless decoding strategies. We also discuss emerging approaches such as neural manifolds within Bayesian estimation. Next, we discuss the advanced application of Bayesian decoding in understanding the neuronal coding mechanisms of memory consolidation and planning, and in supporting computational model establishment and closed-loop manipulation. Finally, we discuss the limitations and challenges of recent approaches, highlighting the promising strategies that could raise the decoding efficiency and adapt the growing scale of neural data. We believe that the developing of Bayesian decoding approach would significantly benefit for techniques and applications of memory-related brain machine interface.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ae0c3c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ae0c3c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian decoding and its application in reading out spatial memory from neural ensembles.
Spatial memory serves as a foundation to establish cognitive map, supporting navigation and decision-making processes across species. Essential brain regions such as the hippocampus and entorhinal cortex enable these functions through spatially tuned neurons, particularly place cells, which encode an animal's precise location. The continuous spatial trajectories are then able to be represented by temporally sequential firing of these cells at neural ensemble level. Bayesian frameworks are powerful tools for reconstructing such "mind travel". In this article, we focus on the principles and advances of Bayesian decoding methods for extracting spatial memory information from neural ensembles. First, we review non-recursive approaches and recursive point process filters, paying special attention to clusterless decoding strategies. We also discuss emerging approaches such as neural manifolds within Bayesian estimation. Next, we discuss the advanced application of Bayesian decoding in understanding the neuronal coding mechanisms of memory consolidation and planning, and in supporting computational model establishment and closed-loop manipulation. Finally, we discuss the limitations and challenges of recent approaches, highlighting the promising strategies that could raise the decoding efficiency and adapt the growing scale of neural data. We believe that the developing of Bayesian decoding approach would significantly benefit for techniques and applications of memory-related brain machine interface.