{"title":"数字PCR与实时RT-PCR在呼吸道病毒诊断中的比较","authors":"Irene Bianconi, Giovanna Viviana Pellecchia, Elisabetta Maria Incrocci, Fabio Vittadello, Maira Nicoletti, Elisabetta Pagani","doi":"10.3390/v17091259","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>: Respiratory viral infections pose a major global health burden, and molecular diagnostics such as Real-Time RT-PCR have revealed frequent co-infections. However, precise quantification of viral RNA remains challenging. Digital PCR (dPCR) offers absolute quantification without standard curves and may improve diagnostic accuracy. This study compares dPCR and Real-Time RT-PCR in detecting and quantifying influenza A, influenza B, respiratory syncytial virus (RSV), and SARS-CoV-2 during the 2023-2024 tripledemic. <i>Methods</i>: A total of 123 respiratory samples were analysed and stratified by cycle threshold (Ct) values into high, medium, and low viral load categories. Both dPCR and Real-Time RT-PCR were used to quantify and compare viral loads across these categories. <i>Results</i>: dPCR demonstrated superior accuracy, particularly for high viral loads of influenza A, influenza B, and SARS-CoV-2, and for medium loads of RSV. It showed greater consistency and precision than Real-Time RT-PCR, especially in quantifying intermediate viral levels. <i>Conclusions</i>: These findings highlight the potential of dPCR to enhance respiratory virus diagnostics and support a better understanding of co-infection dynamics. Nonetheless, its routine implementation is currently limited by higher costs and reduced automation compared to Real-Time RT-PCR.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474457/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative Performance of Digital PCR and Real-Time RT-PCR in Respiratory Virus Diagnostics.\",\"authors\":\"Irene Bianconi, Giovanna Viviana Pellecchia, Elisabetta Maria Incrocci, Fabio Vittadello, Maira Nicoletti, Elisabetta Pagani\",\"doi\":\"10.3390/v17091259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Background</i>: Respiratory viral infections pose a major global health burden, and molecular diagnostics such as Real-Time RT-PCR have revealed frequent co-infections. However, precise quantification of viral RNA remains challenging. Digital PCR (dPCR) offers absolute quantification without standard curves and may improve diagnostic accuracy. This study compares dPCR and Real-Time RT-PCR in detecting and quantifying influenza A, influenza B, respiratory syncytial virus (RSV), and SARS-CoV-2 during the 2023-2024 tripledemic. <i>Methods</i>: A total of 123 respiratory samples were analysed and stratified by cycle threshold (Ct) values into high, medium, and low viral load categories. Both dPCR and Real-Time RT-PCR were used to quantify and compare viral loads across these categories. <i>Results</i>: dPCR demonstrated superior accuracy, particularly for high viral loads of influenza A, influenza B, and SARS-CoV-2, and for medium loads of RSV. It showed greater consistency and precision than Real-Time RT-PCR, especially in quantifying intermediate viral levels. <i>Conclusions</i>: These findings highlight the potential of dPCR to enhance respiratory virus diagnostics and support a better understanding of co-infection dynamics. Nonetheless, its routine implementation is currently limited by higher costs and reduced automation compared to Real-Time RT-PCR.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474457/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v17091259\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091259","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Comparative Performance of Digital PCR and Real-Time RT-PCR in Respiratory Virus Diagnostics.
Background: Respiratory viral infections pose a major global health burden, and molecular diagnostics such as Real-Time RT-PCR have revealed frequent co-infections. However, precise quantification of viral RNA remains challenging. Digital PCR (dPCR) offers absolute quantification without standard curves and may improve diagnostic accuracy. This study compares dPCR and Real-Time RT-PCR in detecting and quantifying influenza A, influenza B, respiratory syncytial virus (RSV), and SARS-CoV-2 during the 2023-2024 tripledemic. Methods: A total of 123 respiratory samples were analysed and stratified by cycle threshold (Ct) values into high, medium, and low viral load categories. Both dPCR and Real-Time RT-PCR were used to quantify and compare viral loads across these categories. Results: dPCR demonstrated superior accuracy, particularly for high viral loads of influenza A, influenza B, and SARS-CoV-2, and for medium loads of RSV. It showed greater consistency and precision than Real-Time RT-PCR, especially in quantifying intermediate viral levels. Conclusions: These findings highlight the potential of dPCR to enhance respiratory virus diagnostics and support a better understanding of co-infection dynamics. Nonetheless, its routine implementation is currently limited by higher costs and reduced automation compared to Real-Time RT-PCR.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.