Juan Wu, Jiaxin Liu, Yanwen Li, Fang Du, Weijia Li, Karuppiah Thilakavathy, Jonathan Chee Woei Lim, Zhong Sun, Juqing Deng
{"title":"缺血性脑卒中中的小胶质细胞自噬和线粒体自噬:从双重作用到治疗调节。","authors":"Juan Wu, Jiaxin Liu, Yanwen Li, Fang Du, Weijia Li, Karuppiah Thilakavathy, Jonathan Chee Woei Lim, Zhong Sun, Juqing Deng","doi":"10.3390/biology14091269","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke induces complex neuroinflammatory cascades, where microglial autophagy and mitophagy serve dual roles in both injury amplification and tissue repair. This scoping review synthesized current evidence on their regulatory mechanisms and therapeutic implications. Literature was identified via PubMed and Embase, yielding 79 records, from which 39 original research articles and 13 review papers were included after eligibility screening. Search terms included \"microglia,\" \"autophagy,\" and \"ischemic stroke.\" Protective autophagy was frequently associated with AMPK activation, mTOR inhibition, and mitophagy pathways such as PINK1/Parkin and BNIP3/NIX, facilitating mitochondrial clearance, M2 polarization, and anti-inflammatory signaling. Therapeutic agents such as rapamycin, Tat-Beclin 1, and Urolithin A consistently demonstrated neuroprotection in preclinical stroke models. In contrast, excessive or prolonged autophagic activation was linked to inflammasome amplification, oxidative stress, and phagoptosis. Limited human studies reported associations between elevated serum ATG5 levels or ATG7 polymorphisms and worse clinical outcomes, suggesting preliminary translational relevance. These findings support the potential of phase-specific modulation of microglial autophagy as a therapeutic avenue for stroke, although further validation in human models and development of autophagy biomarkers are needed for clinical application.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467092/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microglial Autophagy and Mitophagy in Ischemic Stroke: From Dual Roles to Therapeutic Modulation.\",\"authors\":\"Juan Wu, Jiaxin Liu, Yanwen Li, Fang Du, Weijia Li, Karuppiah Thilakavathy, Jonathan Chee Woei Lim, Zhong Sun, Juqing Deng\",\"doi\":\"10.3390/biology14091269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ischemic stroke induces complex neuroinflammatory cascades, where microglial autophagy and mitophagy serve dual roles in both injury amplification and tissue repair. This scoping review synthesized current evidence on their regulatory mechanisms and therapeutic implications. Literature was identified via PubMed and Embase, yielding 79 records, from which 39 original research articles and 13 review papers were included after eligibility screening. Search terms included \\\"microglia,\\\" \\\"autophagy,\\\" and \\\"ischemic stroke.\\\" Protective autophagy was frequently associated with AMPK activation, mTOR inhibition, and mitophagy pathways such as PINK1/Parkin and BNIP3/NIX, facilitating mitochondrial clearance, M2 polarization, and anti-inflammatory signaling. Therapeutic agents such as rapamycin, Tat-Beclin 1, and Urolithin A consistently demonstrated neuroprotection in preclinical stroke models. In contrast, excessive or prolonged autophagic activation was linked to inflammasome amplification, oxidative stress, and phagoptosis. Limited human studies reported associations between elevated serum ATG5 levels or ATG7 polymorphisms and worse clinical outcomes, suggesting preliminary translational relevance. These findings support the potential of phase-specific modulation of microglial autophagy as a therapeutic avenue for stroke, although further validation in human models and development of autophagy biomarkers are needed for clinical application.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467092/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14091269\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14091269","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Microglial Autophagy and Mitophagy in Ischemic Stroke: From Dual Roles to Therapeutic Modulation.
Ischemic stroke induces complex neuroinflammatory cascades, where microglial autophagy and mitophagy serve dual roles in both injury amplification and tissue repair. This scoping review synthesized current evidence on their regulatory mechanisms and therapeutic implications. Literature was identified via PubMed and Embase, yielding 79 records, from which 39 original research articles and 13 review papers were included after eligibility screening. Search terms included "microglia," "autophagy," and "ischemic stroke." Protective autophagy was frequently associated with AMPK activation, mTOR inhibition, and mitophagy pathways such as PINK1/Parkin and BNIP3/NIX, facilitating mitochondrial clearance, M2 polarization, and anti-inflammatory signaling. Therapeutic agents such as rapamycin, Tat-Beclin 1, and Urolithin A consistently demonstrated neuroprotection in preclinical stroke models. In contrast, excessive or prolonged autophagic activation was linked to inflammasome amplification, oxidative stress, and phagoptosis. Limited human studies reported associations between elevated serum ATG5 levels or ATG7 polymorphisms and worse clinical outcomes, suggesting preliminary translational relevance. These findings support the potential of phase-specific modulation of microglial autophagy as a therapeutic avenue for stroke, although further validation in human models and development of autophagy biomarkers are needed for clinical application.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.