基底前脑和海马神经元的简单三维区隔共培养模型。

IF 3.5 3区 生物学 Q1 BIOLOGY
Xiaoman Luo, Jing Li, Zhiyu Deng, Yali Xu, Xixi Li, Miao Ren, Xiangning Li
{"title":"基底前脑和海马神经元的简单三维区隔共培养模型。","authors":"Xiaoman Luo, Jing Li, Zhiyu Deng, Yali Xu, Xixi Li, Miao Ren, Xiangning Li","doi":"10.3390/biology14091238","DOIUrl":null,"url":null,"abstract":"<p><p>The basal forebrain (BF)-hippocampus (HPC) circuit is indispensable for learning and memory, and in vitro models are essential for dissecting its age-related decline. Nonetheless, current culture methods endure brief survival or confine cells to two dimensions, leaving the circuit's progressive degeneration refractory to long-term investigation. Here, we developed a simple, three-dimensional (3D) compartmentalized co-culture model that mimics the anatomical organization of BF and HPC neurons. Results demonstrate that basal forebrain cholinergic neurons (BFCNs) co-cultured with primary HPC neurons remain viable for more than two months without exogenous growth factors, significantly promoting BFCNs growth, polarity development, and functional maturation. In this system, BFCNs somata were confined within the hydrogel, whereas cholinergic axons extended toward adjacent hippocampal area, reaching 1681.9 ± 351.8 μm by week 5-significantly longer than in BFCNs monocultures. This model can successfully recapitulate age-dependent progressive neuronal degeneration during long-term culture, validating this long-term co-culture as a platform for studying circuit aging and degeneration. Therefore, this low-cost and highly physiological platform provides a new avenue for in-depth investigations into the mechanisms of neurodegenerative diseases.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467271/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Simple Three-Dimensional Compartmentalized Co-Culture Model for Basal Forebrain and Hippocampal Neurons.\",\"authors\":\"Xiaoman Luo, Jing Li, Zhiyu Deng, Yali Xu, Xixi Li, Miao Ren, Xiangning Li\",\"doi\":\"10.3390/biology14091238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The basal forebrain (BF)-hippocampus (HPC) circuit is indispensable for learning and memory, and in vitro models are essential for dissecting its age-related decline. Nonetheless, current culture methods endure brief survival or confine cells to two dimensions, leaving the circuit's progressive degeneration refractory to long-term investigation. Here, we developed a simple, three-dimensional (3D) compartmentalized co-culture model that mimics the anatomical organization of BF and HPC neurons. Results demonstrate that basal forebrain cholinergic neurons (BFCNs) co-cultured with primary HPC neurons remain viable for more than two months without exogenous growth factors, significantly promoting BFCNs growth, polarity development, and functional maturation. In this system, BFCNs somata were confined within the hydrogel, whereas cholinergic axons extended toward adjacent hippocampal area, reaching 1681.9 ± 351.8 μm by week 5-significantly longer than in BFCNs monocultures. This model can successfully recapitulate age-dependent progressive neuronal degeneration during long-term culture, validating this long-term co-culture as a platform for studying circuit aging and degeneration. Therefore, this low-cost and highly physiological platform provides a new avenue for in-depth investigations into the mechanisms of neurodegenerative diseases.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467271/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14091238\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14091238","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基底前脑(BF)-海马(HPC)回路对于学习和记忆是必不可少的,体外模型对于解剖其与年龄相关的衰退是必不可少的。然而,目前的培养方法只能短暂存活,或者将细胞限制在二维空间内,使得神经回路的进行性退化难以长期研究。在这里,我们开发了一个简单的,三维(3D)分区共培养模型,模拟BF和HPC神经元的解剖组织。结果表明,基底前脑胆碱能神经元(BFCNs)与原代HPC神经元共培养后,在没有外源生长因子的情况下可存活2个多月,显著促进BFCNs的生长、极性发育和功能成熟。在该系统中,BFCNs的体被限制在水凝胶内,而胆碱能轴突向邻近的海马区延伸,到第5周达到1681.9±351.8 μm,明显长于BFCNs单一培养。该模型可以在长期培养过程中成功再现年龄依赖性进行性神经元变性,验证了这种长期共培养作为研究电路老化和变性的平台。因此,这种低成本、高生理性的平台为深入研究神经退行性疾病的机制提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Three-Dimensional Compartmentalized Co-Culture Model for Basal Forebrain and Hippocampal Neurons.

The basal forebrain (BF)-hippocampus (HPC) circuit is indispensable for learning and memory, and in vitro models are essential for dissecting its age-related decline. Nonetheless, current culture methods endure brief survival or confine cells to two dimensions, leaving the circuit's progressive degeneration refractory to long-term investigation. Here, we developed a simple, three-dimensional (3D) compartmentalized co-culture model that mimics the anatomical organization of BF and HPC neurons. Results demonstrate that basal forebrain cholinergic neurons (BFCNs) co-cultured with primary HPC neurons remain viable for more than two months without exogenous growth factors, significantly promoting BFCNs growth, polarity development, and functional maturation. In this system, BFCNs somata were confined within the hydrogel, whereas cholinergic axons extended toward adjacent hippocampal area, reaching 1681.9 ± 351.8 μm by week 5-significantly longer than in BFCNs monocultures. This model can successfully recapitulate age-dependent progressive neuronal degeneration during long-term culture, validating this long-term co-culture as a platform for studying circuit aging and degeneration. Therefore, this low-cost and highly physiological platform provides a new avenue for in-depth investigations into the mechanisms of neurodegenerative diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信