{"title":"人类RNA病毒密码子使用偏差及其对病毒转译、适应度和进化的影响。","authors":"Iván Ventoso","doi":"10.3390/v17091218","DOIUrl":null,"url":null,"abstract":"<p><p>Synonymous codon usage (codon bias) greatly influences not only translation but also mRNA stability. In vertebrates, highly expressed genes preferentially use codons with an optimal tRNA adaptation index (tAI) that mostly end in C or G. Surprisingly, the codon usage of viruses infecting humans often deviates from optimality, showing an enrichment in A/U-ending codons, which are generally associated with slow decoding and reduced mRNA stability. This observation is particularly evident in RNA viruses causing respiratory illnesses in humans. This review analyzes the mutational and selective forces that shape nucleotide composition and codon usage drift in human RNA viruses, as well as their impact on translation, viral fitness, and evolution. It also describes how some viruses overcome suboptimal codon usage to outcompete host mRNA for translation. Finally, the roles of viral tropism and host adaptation in codon usage bias of prototypical viruses are discussed.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474380/pdf/","citationCount":"0","resultStr":"{\"title\":\"Codon Usage Bias in Human RNA Viruses and Its Impact on Viral Translation, Fitness, and Evolution.\",\"authors\":\"Iván Ventoso\",\"doi\":\"10.3390/v17091218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synonymous codon usage (codon bias) greatly influences not only translation but also mRNA stability. In vertebrates, highly expressed genes preferentially use codons with an optimal tRNA adaptation index (tAI) that mostly end in C or G. Surprisingly, the codon usage of viruses infecting humans often deviates from optimality, showing an enrichment in A/U-ending codons, which are generally associated with slow decoding and reduced mRNA stability. This observation is particularly evident in RNA viruses causing respiratory illnesses in humans. This review analyzes the mutational and selective forces that shape nucleotide composition and codon usage drift in human RNA viruses, as well as their impact on translation, viral fitness, and evolution. It also describes how some viruses overcome suboptimal codon usage to outcompete host mRNA for translation. Finally, the roles of viral tropism and host adaptation in codon usage bias of prototypical viruses are discussed.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v17091218\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17091218","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Codon Usage Bias in Human RNA Viruses and Its Impact on Viral Translation, Fitness, and Evolution.
Synonymous codon usage (codon bias) greatly influences not only translation but also mRNA stability. In vertebrates, highly expressed genes preferentially use codons with an optimal tRNA adaptation index (tAI) that mostly end in C or G. Surprisingly, the codon usage of viruses infecting humans often deviates from optimality, showing an enrichment in A/U-ending codons, which are generally associated with slow decoding and reduced mRNA stability. This observation is particularly evident in RNA viruses causing respiratory illnesses in humans. This review analyzes the mutational and selective forces that shape nucleotide composition and codon usage drift in human RNA viruses, as well as their impact on translation, viral fitness, and evolution. It also describes how some viruses overcome suboptimal codon usage to outcompete host mRNA for translation. Finally, the roles of viral tropism and host adaptation in codon usage bias of prototypical viruses are discussed.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.