Oscar Girón-Vallejo, Bernardo Garcia-Nuñez, Isidoro Narbona-Arias, Alexander Siles-Hinojosa, Francisco Javier Murcia-Pascual, Moutasem Azzubi, Ignacio Gorriti, Dario Garcia-Calderon, Antonio Piñero-Madrona, Lucas Krauel
{"title":"新生儿手术中患者特异性3D模型的临床影响:基于病例的应用回顾和未来发展方向。","authors":"Oscar Girón-Vallejo, Bernardo Garcia-Nuñez, Isidoro Narbona-Arias, Alexander Siles-Hinojosa, Francisco Javier Murcia-Pascual, Moutasem Azzubi, Ignacio Gorriti, Dario Garcia-Calderon, Antonio Piñero-Madrona, Lucas Krauel","doi":"10.3390/children12091202","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) modeling and printing technologies are increasingly used in pediatric surgery, offering improved anatomical visualization, surgical planning, and personalized approaches to complex conditions. Compared to standard imaging, patient-specific 3D models-virtual or printed-provide a more intuitive spatial understanding of congenital anomalies, tumors, and vascular anomalies. This review compiles evidence from pediatric surgical fields including oncology, abdominal, and thoracic surgery, highlighting the clinical relevance of 3D applications. The technological workflow-from image segmentation to computer-aided design (CAD) modeling and multimaterial printing-is described, emphasizing accuracy, reproducibility, and integration into hospital systems. Several clinical cases are presented: neuroblastoma, cloacal malformation, conjoined twins, and two cases of congenital diaphragmatic hernia (one with congenital pulmonary airway malformation, CPAM). In each, 3D modeling enhanced anatomical clarity, increased surgeon confidence, and supported safer intraoperative decision-making. Models also improved communication with families and enabled effective multidisciplinary planning. Despite these advantages, challenges remain, such as production time, cost variability, and lack of standardization. Future directions include artificial intelligence-based automation, expanded use of virtual and mixed reality, and prospective validation studies in pediatric cohorts. Overall, 3D modeling represents a significant advance in pediatric precision surgery, with growing evidence supporting its safety, clinical utility, and educational value.</p>","PeriodicalId":48588,"journal":{"name":"Children-Basel","volume":"12 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469229/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical Impact of Patient-Specific 3D Models in Neonatal Surgery: A Case-Based Review of Applications and Future Directions.\",\"authors\":\"Oscar Girón-Vallejo, Bernardo Garcia-Nuñez, Isidoro Narbona-Arias, Alexander Siles-Hinojosa, Francisco Javier Murcia-Pascual, Moutasem Azzubi, Ignacio Gorriti, Dario Garcia-Calderon, Antonio Piñero-Madrona, Lucas Krauel\",\"doi\":\"10.3390/children12091202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Three-dimensional (3D) modeling and printing technologies are increasingly used in pediatric surgery, offering improved anatomical visualization, surgical planning, and personalized approaches to complex conditions. Compared to standard imaging, patient-specific 3D models-virtual or printed-provide a more intuitive spatial understanding of congenital anomalies, tumors, and vascular anomalies. This review compiles evidence from pediatric surgical fields including oncology, abdominal, and thoracic surgery, highlighting the clinical relevance of 3D applications. The technological workflow-from image segmentation to computer-aided design (CAD) modeling and multimaterial printing-is described, emphasizing accuracy, reproducibility, and integration into hospital systems. Several clinical cases are presented: neuroblastoma, cloacal malformation, conjoined twins, and two cases of congenital diaphragmatic hernia (one with congenital pulmonary airway malformation, CPAM). In each, 3D modeling enhanced anatomical clarity, increased surgeon confidence, and supported safer intraoperative decision-making. Models also improved communication with families and enabled effective multidisciplinary planning. Despite these advantages, challenges remain, such as production time, cost variability, and lack of standardization. Future directions include artificial intelligence-based automation, expanded use of virtual and mixed reality, and prospective validation studies in pediatric cohorts. Overall, 3D modeling represents a significant advance in pediatric precision surgery, with growing evidence supporting its safety, clinical utility, and educational value.</p>\",\"PeriodicalId\":48588,\"journal\":{\"name\":\"Children-Basel\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Children-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/children12091202\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PEDIATRICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Children-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/children12091202","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
Clinical Impact of Patient-Specific 3D Models in Neonatal Surgery: A Case-Based Review of Applications and Future Directions.
Three-dimensional (3D) modeling and printing technologies are increasingly used in pediatric surgery, offering improved anatomical visualization, surgical planning, and personalized approaches to complex conditions. Compared to standard imaging, patient-specific 3D models-virtual or printed-provide a more intuitive spatial understanding of congenital anomalies, tumors, and vascular anomalies. This review compiles evidence from pediatric surgical fields including oncology, abdominal, and thoracic surgery, highlighting the clinical relevance of 3D applications. The technological workflow-from image segmentation to computer-aided design (CAD) modeling and multimaterial printing-is described, emphasizing accuracy, reproducibility, and integration into hospital systems. Several clinical cases are presented: neuroblastoma, cloacal malformation, conjoined twins, and two cases of congenital diaphragmatic hernia (one with congenital pulmonary airway malformation, CPAM). In each, 3D modeling enhanced anatomical clarity, increased surgeon confidence, and supported safer intraoperative decision-making. Models also improved communication with families and enabled effective multidisciplinary planning. Despite these advantages, challenges remain, such as production time, cost variability, and lack of standardization. Future directions include artificial intelligence-based automation, expanded use of virtual and mixed reality, and prospective validation studies in pediatric cohorts. Overall, 3D modeling represents a significant advance in pediatric precision surgery, with growing evidence supporting its safety, clinical utility, and educational value.
期刊介绍:
Children is an international, open access journal dedicated to a streamlined, yet scientifically rigorous, dissemination of peer-reviewed science related to childhood health and disease in developed and developing countries.
The publication focuses on sharing clinical, epidemiological and translational science relevant to children’s health. Moreover, the primary goals of the publication are to highlight under‑represented pediatric disciplines, to emphasize interdisciplinary research and to disseminate advances in knowledge in global child health. In addition to original research, the journal publishes expert editorials and commentaries, clinical case reports, and insightful communications reflecting the latest developments in pediatric medicine. By publishing meritorious articles as soon as the editorial review process is completed, rather than at predefined intervals, Children also permits rapid open access sharing of new information, allowing us to reach the broadest audience in the most expedient fashion.