Xin-Yu Zheng, Wan Wei, Asim Muhammad, Min Zhang, Yan-Jun Chen, Jia-Hong Xie, Dan-Ju Kang, Jin-Jun Chen
{"title":"未经处理和微生物降解的红树林沉积物微塑料对斑马鱼肠道组织学及免疫和抗氧化生物标志物的影响","authors":"Xin-Yu Zheng, Wan Wei, Asim Muhammad, Min Zhang, Yan-Jun Chen, Jia-Hong Xie, Dan-Ju Kang, Jin-Jun Chen","doi":"10.3390/vetsci12090854","DOIUrl":null,"url":null,"abstract":"<p><p>MPs are pervasive pollutants in marine ecosystems, posing risks to aquatic organisms due to their small size and bioaccumulation potential. This study investigated the intestinal toxicity of MP particles extracted from mangrove sediments in <i>zebrafish</i>, comparing the effects before and after microbial degradation. <i>Zebrafish</i> were exposed to either undegraded MPs or microbially degraded MP extracts at concentrations of 0 (control), 2, 10, and 50 mg/L for 21 days in 10 L tanks (stocking density: 10 fish/L), with three replicate tanks per concentration. MPs were dispersed ultrasonically before addition to the water. Intestinal samples were collected on 7, 14, and 21 days for the analysis of immune response (tumor necrosis factor-alpha, TNF-α; interleukin-1 beta, IL-1β; interleukin-6, IL-6; interleukin-8, IL-8) and antioxidant activity (superoxide dismutase, SOD; catalase, CAT). Histopathological analysis revealed intestinal wall thinning, villus damage, and epithelial cell detachment in <i>zebrafish</i> exposed to both undegraded and degraded MP extracts; however, undegraded MPs induced more severe intestinal damage. Results indicated dynamic changes in cytokine expression: TNF-α decreased initially before increasing, while IL-1β and IL-8 first rose then declined. IL-6 peaked on day 7, dropped by day 14, and increased again on day 21. CAT expression decreased, whereas SOD increased only in the pre-degradation group. Microbial degradation reduced intestinal damage severity, with effects intensifying at higher MP exposure levels. These findings demonstrate that MPs can impair <i>zebrafish</i> digestive systems, but microbial degradation mitigates their toxicity. This study underscores the importance of biodegradation as a potential environmental remediation strategy and provides experimental evidence on MPs' impact on aquatic organisms.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474245/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of Untreated and Microbially Degraded Mangrove Sediment Microplastics on <i>Zebrafish</i> (<i>Danio rerio</i>) Intestinal Histology and Immune and Antioxidant Biomarkers.\",\"authors\":\"Xin-Yu Zheng, Wan Wei, Asim Muhammad, Min Zhang, Yan-Jun Chen, Jia-Hong Xie, Dan-Ju Kang, Jin-Jun Chen\",\"doi\":\"10.3390/vetsci12090854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MPs are pervasive pollutants in marine ecosystems, posing risks to aquatic organisms due to their small size and bioaccumulation potential. This study investigated the intestinal toxicity of MP particles extracted from mangrove sediments in <i>zebrafish</i>, comparing the effects before and after microbial degradation. <i>Zebrafish</i> were exposed to either undegraded MPs or microbially degraded MP extracts at concentrations of 0 (control), 2, 10, and 50 mg/L for 21 days in 10 L tanks (stocking density: 10 fish/L), with three replicate tanks per concentration. MPs were dispersed ultrasonically before addition to the water. Intestinal samples were collected on 7, 14, and 21 days for the analysis of immune response (tumor necrosis factor-alpha, TNF-α; interleukin-1 beta, IL-1β; interleukin-6, IL-6; interleukin-8, IL-8) and antioxidant activity (superoxide dismutase, SOD; catalase, CAT). Histopathological analysis revealed intestinal wall thinning, villus damage, and epithelial cell detachment in <i>zebrafish</i> exposed to both undegraded and degraded MP extracts; however, undegraded MPs induced more severe intestinal damage. Results indicated dynamic changes in cytokine expression: TNF-α decreased initially before increasing, while IL-1β and IL-8 first rose then declined. IL-6 peaked on day 7, dropped by day 14, and increased again on day 21. CAT expression decreased, whereas SOD increased only in the pre-degradation group. Microbial degradation reduced intestinal damage severity, with effects intensifying at higher MP exposure levels. These findings demonstrate that MPs can impair <i>zebrafish</i> digestive systems, but microbial degradation mitigates their toxicity. This study underscores the importance of biodegradation as a potential environmental remediation strategy and provides experimental evidence on MPs' impact on aquatic organisms.</p>\",\"PeriodicalId\":23694,\"journal\":{\"name\":\"Veterinary Sciences\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474245/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/vetsci12090854\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12090854","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Influence of Untreated and Microbially Degraded Mangrove Sediment Microplastics on Zebrafish (Danio rerio) Intestinal Histology and Immune and Antioxidant Biomarkers.
MPs are pervasive pollutants in marine ecosystems, posing risks to aquatic organisms due to their small size and bioaccumulation potential. This study investigated the intestinal toxicity of MP particles extracted from mangrove sediments in zebrafish, comparing the effects before and after microbial degradation. Zebrafish were exposed to either undegraded MPs or microbially degraded MP extracts at concentrations of 0 (control), 2, 10, and 50 mg/L for 21 days in 10 L tanks (stocking density: 10 fish/L), with three replicate tanks per concentration. MPs were dispersed ultrasonically before addition to the water. Intestinal samples were collected on 7, 14, and 21 days for the analysis of immune response (tumor necrosis factor-alpha, TNF-α; interleukin-1 beta, IL-1β; interleukin-6, IL-6; interleukin-8, IL-8) and antioxidant activity (superoxide dismutase, SOD; catalase, CAT). Histopathological analysis revealed intestinal wall thinning, villus damage, and epithelial cell detachment in zebrafish exposed to both undegraded and degraded MP extracts; however, undegraded MPs induced more severe intestinal damage. Results indicated dynamic changes in cytokine expression: TNF-α decreased initially before increasing, while IL-1β and IL-8 first rose then declined. IL-6 peaked on day 7, dropped by day 14, and increased again on day 21. CAT expression decreased, whereas SOD increased only in the pre-degradation group. Microbial degradation reduced intestinal damage severity, with effects intensifying at higher MP exposure levels. These findings demonstrate that MPs can impair zebrafish digestive systems, but microbial degradation mitigates their toxicity. This study underscores the importance of biodegradation as a potential environmental remediation strategy and provides experimental evidence on MPs' impact on aquatic organisms.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.