{"title":"逆转录酶重组酶聚合酶扩增联合侧流试纸快速检测罗非鱼湖病毒的初步研究","authors":"Saralee Srivorakul, Thunyamas Guntawang, Tidaratt Sittisak, Thanchanok Gordsueb, Kittikorn Boonsri, Rutch Khattiya, Nattawooti Sthitmatee, Kidsadagon Pringproa","doi":"10.3390/vetsci12090845","DOIUrl":null,"url":null,"abstract":"<p><p>Tilapia Lake Virus (TiLV) is well known as a highly contagious viral infection in aquaculture, particularly affecting Tilapia worldwide. Until recently, various TiLV diagnostic methods have been used for rapid and accurate diagnostic procedures that are crucial for timely disease detection and reducing losses. In this study, we developed an alternative method for investigating TiLV diagnosis using Reverse Transcriptase Recombinase Polymerase Amplification (RT-RPA) assay combined with a lateral flow dipstick (LFD). The test was generated by specific anti-FITC and anti-Biotin capture antibodies that are compatible with the TiLV-specific primers tagged with FITC and Biotin. The test was conducted by the reverse transcriptase of target TiLV RNA and RPA amplification at 39 °C for 20 min. The products were then determined by a positive band signal via LFD. The RT-RPA-LFD assay detected the plasmid of TiLV (pTiLV) with a Limit of Detection (LOD) of 3.19 copies/µL, while the RT-PCR-LFD assay detected it with an LOD of 319 copies/µL. Our findings demonstrate that RT-RPA-LFD represents a possible alternative to RT-PCR for the rapid and sensitive detection of TiLV, especially in areas with limited infrastructure.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of Reverse Transcriptase Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick for Rapid Detection of Tilapia Lake Virus (TiLV): Pilot Study.\",\"authors\":\"Saralee Srivorakul, Thunyamas Guntawang, Tidaratt Sittisak, Thanchanok Gordsueb, Kittikorn Boonsri, Rutch Khattiya, Nattawooti Sthitmatee, Kidsadagon Pringproa\",\"doi\":\"10.3390/vetsci12090845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tilapia Lake Virus (TiLV) is well known as a highly contagious viral infection in aquaculture, particularly affecting Tilapia worldwide. Until recently, various TiLV diagnostic methods have been used for rapid and accurate diagnostic procedures that are crucial for timely disease detection and reducing losses. In this study, we developed an alternative method for investigating TiLV diagnosis using Reverse Transcriptase Recombinase Polymerase Amplification (RT-RPA) assay combined with a lateral flow dipstick (LFD). The test was generated by specific anti-FITC and anti-Biotin capture antibodies that are compatible with the TiLV-specific primers tagged with FITC and Biotin. The test was conducted by the reverse transcriptase of target TiLV RNA and RPA amplification at 39 °C for 20 min. The products were then determined by a positive band signal via LFD. The RT-RPA-LFD assay detected the plasmid of TiLV (pTiLV) with a Limit of Detection (LOD) of 3.19 copies/µL, while the RT-PCR-LFD assay detected it with an LOD of 319 copies/µL. Our findings demonstrate that RT-RPA-LFD represents a possible alternative to RT-PCR for the rapid and sensitive detection of TiLV, especially in areas with limited infrastructure.</p>\",\"PeriodicalId\":23694,\"journal\":{\"name\":\"Veterinary Sciences\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Sciences\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/vetsci12090845\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12090845","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Development of Reverse Transcriptase Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick for Rapid Detection of Tilapia Lake Virus (TiLV): Pilot Study.
Tilapia Lake Virus (TiLV) is well known as a highly contagious viral infection in aquaculture, particularly affecting Tilapia worldwide. Until recently, various TiLV diagnostic methods have been used for rapid and accurate diagnostic procedures that are crucial for timely disease detection and reducing losses. In this study, we developed an alternative method for investigating TiLV diagnosis using Reverse Transcriptase Recombinase Polymerase Amplification (RT-RPA) assay combined with a lateral flow dipstick (LFD). The test was generated by specific anti-FITC and anti-Biotin capture antibodies that are compatible with the TiLV-specific primers tagged with FITC and Biotin. The test was conducted by the reverse transcriptase of target TiLV RNA and RPA amplification at 39 °C for 20 min. The products were then determined by a positive band signal via LFD. The RT-RPA-LFD assay detected the plasmid of TiLV (pTiLV) with a Limit of Detection (LOD) of 3.19 copies/µL, while the RT-PCR-LFD assay detected it with an LOD of 319 copies/µL. Our findings demonstrate that RT-RPA-LFD represents a possible alternative to RT-PCR for the rapid and sensitive detection of TiLV, especially in areas with limited infrastructure.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.