Armin Rabsteyn, Henning Zelba, Borong Shao, Lisa Oenning, Christina Kyzirakos, Simone Kayser, Tabea Riedlinger, Johannes Harter, Magdalena Feldhahn, Dirk Hadaschik, Florian Battke, Veit Scheble, Alfred Königsrainer, Saskia Biskup
{"title":"病例报告:针对个体体细胞突变的多肽疫苗诱导转移性结直肠癌患者肿瘤浸润新抗原特异性T细胞。","authors":"Armin Rabsteyn, Henning Zelba, Borong Shao, Lisa Oenning, Christina Kyzirakos, Simone Kayser, Tabea Riedlinger, Johannes Harter, Magdalena Feldhahn, Dirk Hadaschik, Florian Battke, Veit Scheble, Alfred Königsrainer, Saskia Biskup","doi":"10.3390/vaccines13090960","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Fully personalized peptide vaccines targeting tumor-specific mutations are a promising treatment option for patients in an adjuvant but also advanced/metastatic disease situation in addition to non-personalized standard therapies. Here, we report a patient's case with advanced metastatic colorectal cancer (mCRC) who was treated with a neoantigen-derived multi-peptide vaccine in addition to standard of care.</p><p><strong>Methods: </strong>Tumor-specific mutations were identified by whole exome and transcriptome sequencing. An individualized peptide vaccine was designed using an in-house developed epitope prediction and vaccine design platform. In this case, the vaccine consisted of 20 peptides targeting 18 distinct mutations. The vaccine was administered according to a prime-boost scheme for a total of 12 vaccinations. Vaccine immunogenicity was determined by stimulation of patient T cells with vaccinated peptides and subsequent intracellular cytokine staining (ICS). Tumor-infiltrating lymphocytes (TIL) were analyzed by ICS and T cell receptor beta chain (TCRβ) sequencing.</p><p><strong>Results: </strong>The patient survived for 41 months since initial diagnosis despite continuous disease progression under all therapeutic interventions. The vaccination induced multiple neoantigen-specific T cell responses in the patient without notable side effects. Two liver metastases were resected five months after the start of vaccination, and TIL were extracted and cultured. Analysis of TIL cultures revealed tumor infiltration by vaccine-induced neoantigen-specific T cells in only one of the metastases. TCRβ sequencing of neoantigen-specific T cells and tumor tissues supported this finding. Vaccine-targeted variants were reduced or absent in the metastasis with vaccine-specific T cell infiltration.</p><p><strong>Conclusions: </strong>This case demonstrates immunogenicity of a neoantigen-derived peptide vaccine and highlights tumor-infiltrating capabilities and potential cytotoxicity of vaccine-induced T cells in mCRC.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474295/pdf/","citationCount":"0","resultStr":"{\"title\":\"Case Report: A Multi-Peptide Vaccine Targeting Individual Somatic Mutations Induces Tumor Infiltration of Neoantigen-Specific T Cells in a Patient with Metastatic Colorectal Cancer.\",\"authors\":\"Armin Rabsteyn, Henning Zelba, Borong Shao, Lisa Oenning, Christina Kyzirakos, Simone Kayser, Tabea Riedlinger, Johannes Harter, Magdalena Feldhahn, Dirk Hadaschik, Florian Battke, Veit Scheble, Alfred Königsrainer, Saskia Biskup\",\"doi\":\"10.3390/vaccines13090960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/objectives: </strong>Fully personalized peptide vaccines targeting tumor-specific mutations are a promising treatment option for patients in an adjuvant but also advanced/metastatic disease situation in addition to non-personalized standard therapies. Here, we report a patient's case with advanced metastatic colorectal cancer (mCRC) who was treated with a neoantigen-derived multi-peptide vaccine in addition to standard of care.</p><p><strong>Methods: </strong>Tumor-specific mutations were identified by whole exome and transcriptome sequencing. An individualized peptide vaccine was designed using an in-house developed epitope prediction and vaccine design platform. In this case, the vaccine consisted of 20 peptides targeting 18 distinct mutations. The vaccine was administered according to a prime-boost scheme for a total of 12 vaccinations. Vaccine immunogenicity was determined by stimulation of patient T cells with vaccinated peptides and subsequent intracellular cytokine staining (ICS). Tumor-infiltrating lymphocytes (TIL) were analyzed by ICS and T cell receptor beta chain (TCRβ) sequencing.</p><p><strong>Results: </strong>The patient survived for 41 months since initial diagnosis despite continuous disease progression under all therapeutic interventions. The vaccination induced multiple neoantigen-specific T cell responses in the patient without notable side effects. Two liver metastases were resected five months after the start of vaccination, and TIL were extracted and cultured. Analysis of TIL cultures revealed tumor infiltration by vaccine-induced neoantigen-specific T cells in only one of the metastases. TCRβ sequencing of neoantigen-specific T cells and tumor tissues supported this finding. Vaccine-targeted variants were reduced or absent in the metastasis with vaccine-specific T cell infiltration.</p><p><strong>Conclusions: </strong>This case demonstrates immunogenicity of a neoantigen-derived peptide vaccine and highlights tumor-infiltrating capabilities and potential cytotoxicity of vaccine-induced T cells in mCRC.</p>\",\"PeriodicalId\":23634,\"journal\":{\"name\":\"Vaccines\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474295/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/vaccines13090960\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13090960","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Case Report: A Multi-Peptide Vaccine Targeting Individual Somatic Mutations Induces Tumor Infiltration of Neoantigen-Specific T Cells in a Patient with Metastatic Colorectal Cancer.
Background/objectives: Fully personalized peptide vaccines targeting tumor-specific mutations are a promising treatment option for patients in an adjuvant but also advanced/metastatic disease situation in addition to non-personalized standard therapies. Here, we report a patient's case with advanced metastatic colorectal cancer (mCRC) who was treated with a neoantigen-derived multi-peptide vaccine in addition to standard of care.
Methods: Tumor-specific mutations were identified by whole exome and transcriptome sequencing. An individualized peptide vaccine was designed using an in-house developed epitope prediction and vaccine design platform. In this case, the vaccine consisted of 20 peptides targeting 18 distinct mutations. The vaccine was administered according to a prime-boost scheme for a total of 12 vaccinations. Vaccine immunogenicity was determined by stimulation of patient T cells with vaccinated peptides and subsequent intracellular cytokine staining (ICS). Tumor-infiltrating lymphocytes (TIL) were analyzed by ICS and T cell receptor beta chain (TCRβ) sequencing.
Results: The patient survived for 41 months since initial diagnosis despite continuous disease progression under all therapeutic interventions. The vaccination induced multiple neoantigen-specific T cell responses in the patient without notable side effects. Two liver metastases were resected five months after the start of vaccination, and TIL were extracted and cultured. Analysis of TIL cultures revealed tumor infiltration by vaccine-induced neoantigen-specific T cells in only one of the metastases. TCRβ sequencing of neoantigen-specific T cells and tumor tissues supported this finding. Vaccine-targeted variants were reduced or absent in the metastasis with vaccine-specific T cell infiltration.
Conclusions: This case demonstrates immunogenicity of a neoantigen-derived peptide vaccine and highlights tumor-infiltrating capabilities and potential cytotoxicity of vaccine-induced T cells in mCRC.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.