实验室条件下高熵合金加工的健康危害及简单风险评分模型的风险评估综述

IF 4.1 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Toxics Pub Date : 2025-09-13 DOI:10.3390/toxics13090777
Sheetal Kumar Dewangan
{"title":"实验室条件下高熵合金加工的健康危害及简单风险评分模型的风险评估综述","authors":"Sheetal Kumar Dewangan","doi":"10.3390/toxics13090777","DOIUrl":null,"url":null,"abstract":"<p><p>Certain metal powders used in the synthesis and processing of high-entropy alloys (HEAs) pose significant health hazards, as many of these metals are toxic substances with no biological role in the human body. These metals can mimic essential elements or interfere with metabolic processes (the chemical reactions in living organisms that sustain life), leading to detrimental health effects. While some metals, such as aluminum, can be eliminated from the body through natural biological processes, others tend to accumulate, causing chronic illnesses over time. This review examines the toxicity mechanisms and health impacts of metals used in HEA synthesis, focusing on laboratory-scale processing. It also identifies potential health risks associated with occupational exposure in laboratory environments, including the inhalation of toxic metal powders and nanoparticles. A simple risk scoring model is introduced to systematically assess and quantify these risks based on factors such as toxicity levels, exposure limits, and carcinogenic potential (the ability of a substance to cause cancer) as given by the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) standards. The proposed model can be applied to evaluate the relative hazards of commonly used HEA constituent powders (e.g., Ni, Co, Cr, and Al), offering practical guidance for safer laboratory handling and material selection. By integrating this risk assessment framework, this review aims to enhance workplace safety, guide the development of better material handling practices, and assist researchers in mitigating health risks associated with HEA processing.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474114/pdf/","citationCount":"0","resultStr":"{\"title\":\"Review of Health Hazards in High-Entropy Alloy Processing Under Laboratory Conditions and Risk Assessment Using a Simple Risk Scoring Model.\",\"authors\":\"Sheetal Kumar Dewangan\",\"doi\":\"10.3390/toxics13090777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Certain metal powders used in the synthesis and processing of high-entropy alloys (HEAs) pose significant health hazards, as many of these metals are toxic substances with no biological role in the human body. These metals can mimic essential elements or interfere with metabolic processes (the chemical reactions in living organisms that sustain life), leading to detrimental health effects. While some metals, such as aluminum, can be eliminated from the body through natural biological processes, others tend to accumulate, causing chronic illnesses over time. This review examines the toxicity mechanisms and health impacts of metals used in HEA synthesis, focusing on laboratory-scale processing. It also identifies potential health risks associated with occupational exposure in laboratory environments, including the inhalation of toxic metal powders and nanoparticles. A simple risk scoring model is introduced to systematically assess and quantify these risks based on factors such as toxicity levels, exposure limits, and carcinogenic potential (the ability of a substance to cause cancer) as given by the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) standards. The proposed model can be applied to evaluate the relative hazards of commonly used HEA constituent powders (e.g., Ni, Co, Cr, and Al), offering practical guidance for safer laboratory handling and material selection. By integrating this risk assessment framework, this review aims to enhance workplace safety, guide the development of better material handling practices, and assist researchers in mitigating health risks associated with HEA processing.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474114/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13090777\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090777","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

用于合成和加工高熵合金(HEAs)的某些金属粉末对健康造成重大危害,因为其中许多金属是有毒物质,在人体中没有生物学作用。这些金属可以模仿基本元素或干扰代谢过程(维持生命的生物体中的化学反应),导致有害的健康影响。虽然一些金属,如铝,可以通过自然的生物过程从体内排出,但其他金属往往会积累,随着时间的推移导致慢性疾病。本文综述了HEA合成中使用的金属的毒性机制和健康影响,重点是实验室规模的加工。它还确定了与实验室环境中职业接触有关的潜在健康风险,包括吸入有毒金属粉末和纳米颗粒。引入了一个简单的风险评分模型,根据职业安全与健康管理局(OSHA)和国家职业安全与健康研究所(NIOSH)标准给出的毒性水平、暴露限值和致癌潜力(物质致癌的能力)等因素,系统地评估和量化这些风险。该模型可用于评估常用HEA成分粉末(如Ni、Co、Cr和Al)的相对危害,为更安全的实验室处理和材料选择提供实用指导。通过整合这一风险评估框架,本次审查旨在加强工作场所安全,指导制定更好的材料处理做法,并协助研究人员减轻与HEA处理有关的健康风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of Health Hazards in High-Entropy Alloy Processing Under Laboratory Conditions and Risk Assessment Using a Simple Risk Scoring Model.

Certain metal powders used in the synthesis and processing of high-entropy alloys (HEAs) pose significant health hazards, as many of these metals are toxic substances with no biological role in the human body. These metals can mimic essential elements or interfere with metabolic processes (the chemical reactions in living organisms that sustain life), leading to detrimental health effects. While some metals, such as aluminum, can be eliminated from the body through natural biological processes, others tend to accumulate, causing chronic illnesses over time. This review examines the toxicity mechanisms and health impacts of metals used in HEA synthesis, focusing on laboratory-scale processing. It also identifies potential health risks associated with occupational exposure in laboratory environments, including the inhalation of toxic metal powders and nanoparticles. A simple risk scoring model is introduced to systematically assess and quantify these risks based on factors such as toxicity levels, exposure limits, and carcinogenic potential (the ability of a substance to cause cancer) as given by the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) standards. The proposed model can be applied to evaluate the relative hazards of commonly used HEA constituent powders (e.g., Ni, Co, Cr, and Al), offering practical guidance for safer laboratory handling and material selection. By integrating this risk assessment framework, this review aims to enhance workplace safety, guide the development of better material handling practices, and assist researchers in mitigating health risks associated with HEA processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信