{"title":"定量构效关系(QSAR)模型预测化学物质对甲状腺激素系统破坏的研究进展。","authors":"Marco Evangelista, Ester Papa","doi":"10.3390/toxics13090799","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroid hormone (TH) system disruption by chemicals poses a significant concern due to the key role the TH system plays in essential body functions, including the metabolism, growth, and brain development. Animal-based testing methods are resource-demanding and raise ethical issues. Thus, there is a recognised need for new approach methodologies, such as quantitative structure-activity relationship (QSAR) models, to advance chemical hazard assessments. This review, covering the scientific literature from 2010 to 2024, aimed to map the current landscape of QSAR model development for predicting TH system disruption. The focus was placed on QSARs that address molecular initiating events within the adverse outcome pathway for TH system disruption. A total of thirty papers presenting eighty-six different QSARs were selected based on predefined criteria. A discussion on the endpoints and chemical classes modelled, data sources, modelling approaches, and the molecular descriptors selected, including their mechanistic interpretations, was provided. By serving as a \"state-of-the-art\" of the field, existing models and gaps were identified and highlighted. This review can be used to inform future research studies aimed at advancing the assessment of TH system disruption by chemicals without relying on animal-based testing, highlighting areas that require additional research.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474327/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Review of Quantitative Structure-Activity Relationship (QSAR) Models to Predict Thyroid Hormone System Disruption by Chemical Substances.\",\"authors\":\"Marco Evangelista, Ester Papa\",\"doi\":\"10.3390/toxics13090799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thyroid hormone (TH) system disruption by chemicals poses a significant concern due to the key role the TH system plays in essential body functions, including the metabolism, growth, and brain development. Animal-based testing methods are resource-demanding and raise ethical issues. Thus, there is a recognised need for new approach methodologies, such as quantitative structure-activity relationship (QSAR) models, to advance chemical hazard assessments. This review, covering the scientific literature from 2010 to 2024, aimed to map the current landscape of QSAR model development for predicting TH system disruption. The focus was placed on QSARs that address molecular initiating events within the adverse outcome pathway for TH system disruption. A total of thirty papers presenting eighty-six different QSARs were selected based on predefined criteria. A discussion on the endpoints and chemical classes modelled, data sources, modelling approaches, and the molecular descriptors selected, including their mechanistic interpretations, was provided. By serving as a \\\"state-of-the-art\\\" of the field, existing models and gaps were identified and highlighted. This review can be used to inform future research studies aimed at advancing the assessment of TH system disruption by chemicals without relying on animal-based testing, highlighting areas that require additional research.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13090799\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090799","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Review of Quantitative Structure-Activity Relationship (QSAR) Models to Predict Thyroid Hormone System Disruption by Chemical Substances.
Thyroid hormone (TH) system disruption by chemicals poses a significant concern due to the key role the TH system plays in essential body functions, including the metabolism, growth, and brain development. Animal-based testing methods are resource-demanding and raise ethical issues. Thus, there is a recognised need for new approach methodologies, such as quantitative structure-activity relationship (QSAR) models, to advance chemical hazard assessments. This review, covering the scientific literature from 2010 to 2024, aimed to map the current landscape of QSAR model development for predicting TH system disruption. The focus was placed on QSARs that address molecular initiating events within the adverse outcome pathway for TH system disruption. A total of thirty papers presenting eighty-six different QSARs were selected based on predefined criteria. A discussion on the endpoints and chemical classes modelled, data sources, modelling approaches, and the molecular descriptors selected, including their mechanistic interpretations, was provided. By serving as a "state-of-the-art" of the field, existing models and gaps were identified and highlighted. This review can be used to inform future research studies aimed at advancing the assessment of TH system disruption by chemicals without relying on animal-based testing, highlighting areas that require additional research.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.