Svetlana G Frolova, Aleksey A Vatlin, Iunona Pospelova, Nikita A Mitkin, Gulnara A Kulieva, Vsevolod V Pavshintsev
{"title":"在了解污染物诱导的水生生态系统肠道菌群失调中的作用。","authors":"Svetlana G Frolova, Aleksey A Vatlin, Iunona Pospelova, Nikita A Mitkin, Gulnara A Kulieva, Vsevolod V Pavshintsev","doi":"10.3390/toxics13090769","DOIUrl":null,"url":null,"abstract":"<p><p>Freshwater pollution is a global issue that can impact aquatic organisms in multiple ways. One of the many detrimental consequences of freshwater pollution is the disruption of the intestinal microbiome in aquatic animals. This review addresses the impact of various chemical entities like pesticides, heavy metals, antibiotics, dyes, and microplastic. Gut microbiota serves as a crucial regulator of metabolic processes across all organisms. Since numerous metabolic pathways are coordinated by microbial communities, even minor disruptions can lead to consequences ranging from mild to severe. The widespread use of chemicals in modern life has made them a primary focus of current gut microbiota research. Zebrafish (<i>Danio rerio</i>) can serve as a model organism to investigate gut microbiome responses to exposure to hazardous contaminants. In this review we include research studying pesticides (methomyl, λ-cyhalothrin, cyproconazole, dieldrin, penthiopyrad, acetochlor, metamifop, imidacloprid, difenoconazole, imazalil, cypermethrin), heavy metals (lead, cadmium, arsenic, chromium, copper, and various nanoparticles), antibiotics (oxytetracycline, florfenicol, doxycycline, trimethoprim, erythromycin, streptomycin, tetracycline, sulfamethoxazole, and clarithromycin), and microplastics (polystyrene, polyethylene, polyester, polypropylene). This review study provides a description of microbiome alterations due to single and combined short- and long-term exposure to the aforementioned contaminants in zebrafish and larvae microbiomes.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473707/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of <i>Danio rerio</i> in Understanding Pollutant-Induced Gut Microbiome Dysbiosis in Aquatic Ecosystems.\",\"authors\":\"Svetlana G Frolova, Aleksey A Vatlin, Iunona Pospelova, Nikita A Mitkin, Gulnara A Kulieva, Vsevolod V Pavshintsev\",\"doi\":\"10.3390/toxics13090769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Freshwater pollution is a global issue that can impact aquatic organisms in multiple ways. One of the many detrimental consequences of freshwater pollution is the disruption of the intestinal microbiome in aquatic animals. This review addresses the impact of various chemical entities like pesticides, heavy metals, antibiotics, dyes, and microplastic. Gut microbiota serves as a crucial regulator of metabolic processes across all organisms. Since numerous metabolic pathways are coordinated by microbial communities, even minor disruptions can lead to consequences ranging from mild to severe. The widespread use of chemicals in modern life has made them a primary focus of current gut microbiota research. Zebrafish (<i>Danio rerio</i>) can serve as a model organism to investigate gut microbiome responses to exposure to hazardous contaminants. In this review we include research studying pesticides (methomyl, λ-cyhalothrin, cyproconazole, dieldrin, penthiopyrad, acetochlor, metamifop, imidacloprid, difenoconazole, imazalil, cypermethrin), heavy metals (lead, cadmium, arsenic, chromium, copper, and various nanoparticles), antibiotics (oxytetracycline, florfenicol, doxycycline, trimethoprim, erythromycin, streptomycin, tetracycline, sulfamethoxazole, and clarithromycin), and microplastics (polystyrene, polyethylene, polyester, polypropylene). This review study provides a description of microbiome alterations due to single and combined short- and long-term exposure to the aforementioned contaminants in zebrafish and larvae microbiomes.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473707/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13090769\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090769","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Role of Danio rerio in Understanding Pollutant-Induced Gut Microbiome Dysbiosis in Aquatic Ecosystems.
Freshwater pollution is a global issue that can impact aquatic organisms in multiple ways. One of the many detrimental consequences of freshwater pollution is the disruption of the intestinal microbiome in aquatic animals. This review addresses the impact of various chemical entities like pesticides, heavy metals, antibiotics, dyes, and microplastic. Gut microbiota serves as a crucial regulator of metabolic processes across all organisms. Since numerous metabolic pathways are coordinated by microbial communities, even minor disruptions can lead to consequences ranging from mild to severe. The widespread use of chemicals in modern life has made them a primary focus of current gut microbiota research. Zebrafish (Danio rerio) can serve as a model organism to investigate gut microbiome responses to exposure to hazardous contaminants. In this review we include research studying pesticides (methomyl, λ-cyhalothrin, cyproconazole, dieldrin, penthiopyrad, acetochlor, metamifop, imidacloprid, difenoconazole, imazalil, cypermethrin), heavy metals (lead, cadmium, arsenic, chromium, copper, and various nanoparticles), antibiotics (oxytetracycline, florfenicol, doxycycline, trimethoprim, erythromycin, streptomycin, tetracycline, sulfamethoxazole, and clarithromycin), and microplastics (polystyrene, polyethylene, polyester, polypropylene). This review study provides a description of microbiome alterations due to single and combined short- and long-term exposure to the aforementioned contaminants in zebrafish and larvae microbiomes.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.