塑料瓶注射中尺寸与纳米塑料相似的聚丙烯纳米颗粒对人脐静脉内皮细胞的毒理学影响。

IF 4.1 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Toxics Pub Date : 2025-09-21 DOI:10.3390/toxics13090802
Jie Wang, Zhong-Lan Chen, Cheng-Gang Liang, Hui-Ying Yang, Xian-Fu Wu, Hui-Min Sun
{"title":"塑料瓶注射中尺寸与纳米塑料相似的聚丙烯纳米颗粒对人脐静脉内皮细胞的毒理学影响。","authors":"Jie Wang, Zhong-Lan Chen, Cheng-Gang Liang, Hui-Ying Yang, Xian-Fu Wu, Hui-Min Sun","doi":"10.3390/toxics13090802","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastic and nanoplastic (MNP) particles have been observed in various human organs. However, polypropylene (PP), one of the top three most commonly detected types of MNPs in terms of quantity, is also present in injections given for the infusion treatment of diseases, and there is a considerable knowledge gap concerning its adverse effects on the human cardiovascular system. In this study, we used commercial PP particles (500 nm), similar in size to nanoplastics (NPs) present in injections and greater than or equal in concentration to NPs in the blood of healthy individuals, as the experimental dose to study their toxicological effects on human umbilical vein endothelial cells. The results revealed that PP particles at 35 μg/mL, equivalent to 20 times the concentration of blood, reduced cell viability, induced oxidative stress, caused cytomembrane damage, increased the inflammatory response, promoted apoptosis, and inhibited cell migration and wound tissue healing. In addition, a NP concentration of up to 210 μg/mL decreased the level of zonula occludens-1. In conclusion, since we used spherical particles, a type of nanoplastic present in plastic-bottle injections in clinical treatment that induces toxicological effects, this study provides cellular-level insights into the ecological risks of NP exposure in the human body.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474203/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toxicological Impacts of Polypropylene Nanoparticles Similar in Size to Nanoplastics in Plastic-Bottle Injections on Human Umbilical Vein Endothelial Cells.\",\"authors\":\"Jie Wang, Zhong-Lan Chen, Cheng-Gang Liang, Hui-Ying Yang, Xian-Fu Wu, Hui-Min Sun\",\"doi\":\"10.3390/toxics13090802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastic and nanoplastic (MNP) particles have been observed in various human organs. However, polypropylene (PP), one of the top three most commonly detected types of MNPs in terms of quantity, is also present in injections given for the infusion treatment of diseases, and there is a considerable knowledge gap concerning its adverse effects on the human cardiovascular system. In this study, we used commercial PP particles (500 nm), similar in size to nanoplastics (NPs) present in injections and greater than or equal in concentration to NPs in the blood of healthy individuals, as the experimental dose to study their toxicological effects on human umbilical vein endothelial cells. The results revealed that PP particles at 35 μg/mL, equivalent to 20 times the concentration of blood, reduced cell viability, induced oxidative stress, caused cytomembrane damage, increased the inflammatory response, promoted apoptosis, and inhibited cell migration and wound tissue healing. In addition, a NP concentration of up to 210 μg/mL decreased the level of zonula occludens-1. In conclusion, since we used spherical particles, a type of nanoplastic present in plastic-bottle injections in clinical treatment that induces toxicological effects, this study provides cellular-level insights into the ecological risks of NP exposure in the human body.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13090802\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090802","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微塑性和纳米塑性(MNP)颗粒已在人体各种器官中被观察到。然而,就数量而言,聚丙烯(PP)是最常检测到的三种MNPs类型之一,它也存在于用于输注治疗疾病的注射剂中,而且关于其对人体心血管系统的不良影响存在相当大的知识差距。在本研究中,我们使用商业PP颗粒(500 nm)作为实验剂量,研究其对人脐静脉内皮细胞的毒理学影响,该颗粒大小与注射剂中的纳米塑料(NPs)相似,浓度大于或等于健康人血液中的纳米塑料(NPs)。结果显示,35 μg/mL(相当于血液浓度的20倍)的PP颗粒可降低细胞活力,诱导氧化应激,造成细胞膜损伤,增加炎症反应,促进细胞凋亡,抑制细胞迁移和创面组织愈合。另外,当NP浓度达到210 μg/mL时,可使闭塞带-1水平降低。总之,由于我们在临床治疗中使用了球形颗粒,一种存在于塑料瓶注射剂中的纳米塑料,可引起毒理学效应,因此本研究为人体暴露于NP的生态风险提供了细胞水平的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toxicological Impacts of Polypropylene Nanoparticles Similar in Size to Nanoplastics in Plastic-Bottle Injections on Human Umbilical Vein Endothelial Cells.

Microplastic and nanoplastic (MNP) particles have been observed in various human organs. However, polypropylene (PP), one of the top three most commonly detected types of MNPs in terms of quantity, is also present in injections given for the infusion treatment of diseases, and there is a considerable knowledge gap concerning its adverse effects on the human cardiovascular system. In this study, we used commercial PP particles (500 nm), similar in size to nanoplastics (NPs) present in injections and greater than or equal in concentration to NPs in the blood of healthy individuals, as the experimental dose to study their toxicological effects on human umbilical vein endothelial cells. The results revealed that PP particles at 35 μg/mL, equivalent to 20 times the concentration of blood, reduced cell viability, induced oxidative stress, caused cytomembrane damage, increased the inflammatory response, promoted apoptosis, and inhibited cell migration and wound tissue healing. In addition, a NP concentration of up to 210 μg/mL decreased the level of zonula occludens-1. In conclusion, since we used spherical particles, a type of nanoplastic present in plastic-bottle injections in clinical treatment that induces toxicological effects, this study provides cellular-level insights into the ecological risks of NP exposure in the human body.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信