{"title":"空气中无机砷的毒理学:氧化应激、分子机制和器官特异性病理。","authors":"Qingyang Liu","doi":"10.3390/toxics13090753","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic, a naturally occurring metalloid, poses a significant global public health threat due to widespread environmental contamination. Despite its well-documented carcinogenicity, critical gaps remain in understanding the health impacts of chronic low-level airborne exposure and the multi-modal mechanisms driving inorganic arsenic toxicity. This narrative review synthesizes recent molecular research and population health data to explain how airborne inorganic arsenic causes harm through multiple biological pathways. Key novel insights include (1) a comprehensive analysis of inorganic arsenic-induced oxidative stress and epigenetic dysregulation, revealing transgenerational effects via germline epigenetic markers; (2) a critical evaluation of the linear no-threshold (LNT) model, demonstrating its overestimation of low-dose risks by 2-3× compared to threshold-based evidence; and (3) descriptions of mechanistic links between inorganic arsenic speciation, organ-specific pathologies (e.g., neurodevelopmental impairments, cardiovascular diseases), and pollution mitigation strategies. This study connects molecular mechanisms with public health strategies to improve arsenic risk assessment. It focuses on how inorganic arsenic alters gene regulation (epigenetics) and combines exposure from multiple sources, while also clarifying uncertainties about low-dose effects and refining safety standards.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474278/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toxicology of Airborne Inorganic Arsenic: Oxidative Stress, Molecular Mechanisms, and Organ-Specific Pathologies.\",\"authors\":\"Qingyang Liu\",\"doi\":\"10.3390/toxics13090753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arsenic, a naturally occurring metalloid, poses a significant global public health threat due to widespread environmental contamination. Despite its well-documented carcinogenicity, critical gaps remain in understanding the health impacts of chronic low-level airborne exposure and the multi-modal mechanisms driving inorganic arsenic toxicity. This narrative review synthesizes recent molecular research and population health data to explain how airborne inorganic arsenic causes harm through multiple biological pathways. Key novel insights include (1) a comprehensive analysis of inorganic arsenic-induced oxidative stress and epigenetic dysregulation, revealing transgenerational effects via germline epigenetic markers; (2) a critical evaluation of the linear no-threshold (LNT) model, demonstrating its overestimation of low-dose risks by 2-3× compared to threshold-based evidence; and (3) descriptions of mechanistic links between inorganic arsenic speciation, organ-specific pathologies (e.g., neurodevelopmental impairments, cardiovascular diseases), and pollution mitigation strategies. This study connects molecular mechanisms with public health strategies to improve arsenic risk assessment. It focuses on how inorganic arsenic alters gene regulation (epigenetics) and combines exposure from multiple sources, while also clarifying uncertainties about low-dose effects and refining safety standards.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474278/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13090753\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090753","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Toxicology of Airborne Inorganic Arsenic: Oxidative Stress, Molecular Mechanisms, and Organ-Specific Pathologies.
Arsenic, a naturally occurring metalloid, poses a significant global public health threat due to widespread environmental contamination. Despite its well-documented carcinogenicity, critical gaps remain in understanding the health impacts of chronic low-level airborne exposure and the multi-modal mechanisms driving inorganic arsenic toxicity. This narrative review synthesizes recent molecular research and population health data to explain how airborne inorganic arsenic causes harm through multiple biological pathways. Key novel insights include (1) a comprehensive analysis of inorganic arsenic-induced oxidative stress and epigenetic dysregulation, revealing transgenerational effects via germline epigenetic markers; (2) a critical evaluation of the linear no-threshold (LNT) model, demonstrating its overestimation of low-dose risks by 2-3× compared to threshold-based evidence; and (3) descriptions of mechanistic links between inorganic arsenic speciation, organ-specific pathologies (e.g., neurodevelopmental impairments, cardiovascular diseases), and pollution mitigation strategies. This study connects molecular mechanisms with public health strategies to improve arsenic risk assessment. It focuses on how inorganic arsenic alters gene regulation (epigenetics) and combines exposure from multiple sources, while also clarifying uncertainties about low-dose effects and refining safety standards.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.