{"title":"可降解微塑料如何通过界面相互作用增强土壤中Cu2+的流动性。","authors":"Hongjia Peng, Bolun Yu, Zuhong Lin, Haipu Li","doi":"10.3390/toxics13090795","DOIUrl":null,"url":null,"abstract":"<p><p>The incomplete degradation of degradable plastics may pose potential ecological risks, as it can generate degradable microplastics (DMPs), especially when these DMPs coexist with heavy metals in soil. Taking petrochemical-based poly(butylene adipate-co-terephthalate) (PBAT) and bio-based polylactic acid (PLA) as representative DMPs, this study investigated how DMPs affect the adsorption-desorption behavior of Cu<sup>2+</sup> in soil and the underlying mechanisms via batch equilibrium experiments and characterization analyses. The experiments revealed that ion exchange (accounting for 33.6-34.3%), oxygen-containing functional group complexation, and electrostatic interactions were the primary adsorption driving forces, with chemical adsorption playing the main role. Compared to the soil, the PBAT and PLA had smaller specific surface areas and pore volumes, fewer oxygen-containing functional groups, and especially lacked O-metal functional groups. They can dilute soil, clog its pores, and cover its active sites. 1% DMPs significantly reduced the soil's equilibrium adsorption capacity (Q<sub>e</sub>) (3.7-4.7%) and increased equilibrium desorption capacity (Q<sub>De</sub>) (1.7-2.6%), thereby increasing the mobility and ecological risk of Cu<sup>2+</sup>. PBAT and PLA had no significant difference in effects on the adsorption, but their specific mechanisms were somewhat distinct. Faced with the prevalent, worsening coexistence of DMPs and heavy metals in soil, these findings contribute to the ecological risk assessment of DMPs.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474448/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insights into How Degradable Microplastics Enhance Cu<sup>2+</sup> Mobility in Soil Through Interfacial Interaction.\",\"authors\":\"Hongjia Peng, Bolun Yu, Zuhong Lin, Haipu Li\",\"doi\":\"10.3390/toxics13090795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The incomplete degradation of degradable plastics may pose potential ecological risks, as it can generate degradable microplastics (DMPs), especially when these DMPs coexist with heavy metals in soil. Taking petrochemical-based poly(butylene adipate-co-terephthalate) (PBAT) and bio-based polylactic acid (PLA) as representative DMPs, this study investigated how DMPs affect the adsorption-desorption behavior of Cu<sup>2+</sup> in soil and the underlying mechanisms via batch equilibrium experiments and characterization analyses. The experiments revealed that ion exchange (accounting for 33.6-34.3%), oxygen-containing functional group complexation, and electrostatic interactions were the primary adsorption driving forces, with chemical adsorption playing the main role. Compared to the soil, the PBAT and PLA had smaller specific surface areas and pore volumes, fewer oxygen-containing functional groups, and especially lacked O-metal functional groups. They can dilute soil, clog its pores, and cover its active sites. 1% DMPs significantly reduced the soil's equilibrium adsorption capacity (Q<sub>e</sub>) (3.7-4.7%) and increased equilibrium desorption capacity (Q<sub>De</sub>) (1.7-2.6%), thereby increasing the mobility and ecological risk of Cu<sup>2+</sup>. PBAT and PLA had no significant difference in effects on the adsorption, but their specific mechanisms were somewhat distinct. Faced with the prevalent, worsening coexistence of DMPs and heavy metals in soil, these findings contribute to the ecological risk assessment of DMPs.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474448/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13090795\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090795","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Insights into How Degradable Microplastics Enhance Cu2+ Mobility in Soil Through Interfacial Interaction.
The incomplete degradation of degradable plastics may pose potential ecological risks, as it can generate degradable microplastics (DMPs), especially when these DMPs coexist with heavy metals in soil. Taking petrochemical-based poly(butylene adipate-co-terephthalate) (PBAT) and bio-based polylactic acid (PLA) as representative DMPs, this study investigated how DMPs affect the adsorption-desorption behavior of Cu2+ in soil and the underlying mechanisms via batch equilibrium experiments and characterization analyses. The experiments revealed that ion exchange (accounting for 33.6-34.3%), oxygen-containing functional group complexation, and electrostatic interactions were the primary adsorption driving forces, with chemical adsorption playing the main role. Compared to the soil, the PBAT and PLA had smaller specific surface areas and pore volumes, fewer oxygen-containing functional groups, and especially lacked O-metal functional groups. They can dilute soil, clog its pores, and cover its active sites. 1% DMPs significantly reduced the soil's equilibrium adsorption capacity (Qe) (3.7-4.7%) and increased equilibrium desorption capacity (QDe) (1.7-2.6%), thereby increasing the mobility and ecological risk of Cu2+. PBAT and PLA had no significant difference in effects on the adsorption, but their specific mechanisms were somewhat distinct. Faced with the prevalent, worsening coexistence of DMPs and heavy metals in soil, these findings contribute to the ecological risk assessment of DMPs.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.