Ting Zhao, Kai Qu, Fenghua Ma, Yuhan Liang, Ziquan Wang, Jieyu Liu, Hao Liang, Min Wei, Houfeng Liu, Pingping Wang
{"title":"基于dalys的中国北方典型污染区pm2.5结合金属健康风险评价及关键影响因素","authors":"Ting Zhao, Kai Qu, Fenghua Ma, Yuhan Liang, Ziquan Wang, Jieyu Liu, Hao Liang, Min Wei, Houfeng Liu, Pingping Wang","doi":"10.3390/toxics13090722","DOIUrl":null,"url":null,"abstract":"<p><p>The health risks of PM<sub>2.5</sub>-bound metals highlight the need for burden assessment, metal prioritization, and key factor analysis to support effective air quality management, yet relevant studies remain limited. Shandong Province is one of the most polluted regions in northern China, providing an ideal setting for this investigation. We monitored 17 PM<sub>2.5</sub>-bound metals for three years across Shandong, China and performed disease burden assessment based on disability-adjusted life years (DALYs). Furthermore, key influencing factors contributing to high-hazard metals were identified through explainable machine learning. The results showed that PM<sub>2.5</sub>-bound metal concentrations were generally higher in inland areas than in coastal regions, with Ni concentrations elevated in coastal areas. K, Ca, Zn, and Mn exhibited the highest three-year average concentrations among the metals, while Cr averaged 6.12 ng/m<sup>3</sup>, significantly exceeding the recommended annual limit of 0.025 ng/m<sup>3</sup> set by Chinese Ambient Air Quality Standards. Jinan carried the greatest burden at 4.67 DALYs per 1000 people, followed by Zibo (3.78), Weifang (2.98), and Rizhao (2.80). CKD, interstitial pneumonia, and chronic respiratory diseases account for the highest DALYs from PM<sub>2.5</sub>-bound metals in Shandong Province. Industrial emissions are the largest contributors to the disease burden (>34%), with Cr, Cd, and Pb as the primary contributing metals requiring priority control. Fractional vegetation cover was identified as the key factor contributing to the reduction in their concentrations. These results underscore that prioritizing the regulation of industrial combustion, particularly concerning Cr, Cd, and Pb, and enhancing fractional vegetation cover could reduce disease burden and provide public health benefits.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473478/pdf/","citationCount":"0","resultStr":"{\"title\":\"DALYs-Based Health Risk Assessment and Key Influencing Factors of PM<sub>2.5</sub>-Bound Metals in Typical Pollution Areas of Northern China.\",\"authors\":\"Ting Zhao, Kai Qu, Fenghua Ma, Yuhan Liang, Ziquan Wang, Jieyu Liu, Hao Liang, Min Wei, Houfeng Liu, Pingping Wang\",\"doi\":\"10.3390/toxics13090722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The health risks of PM<sub>2.5</sub>-bound metals highlight the need for burden assessment, metal prioritization, and key factor analysis to support effective air quality management, yet relevant studies remain limited. Shandong Province is one of the most polluted regions in northern China, providing an ideal setting for this investigation. We monitored 17 PM<sub>2.5</sub>-bound metals for three years across Shandong, China and performed disease burden assessment based on disability-adjusted life years (DALYs). Furthermore, key influencing factors contributing to high-hazard metals were identified through explainable machine learning. The results showed that PM<sub>2.5</sub>-bound metal concentrations were generally higher in inland areas than in coastal regions, with Ni concentrations elevated in coastal areas. K, Ca, Zn, and Mn exhibited the highest three-year average concentrations among the metals, while Cr averaged 6.12 ng/m<sup>3</sup>, significantly exceeding the recommended annual limit of 0.025 ng/m<sup>3</sup> set by Chinese Ambient Air Quality Standards. Jinan carried the greatest burden at 4.67 DALYs per 1000 people, followed by Zibo (3.78), Weifang (2.98), and Rizhao (2.80). CKD, interstitial pneumonia, and chronic respiratory diseases account for the highest DALYs from PM<sub>2.5</sub>-bound metals in Shandong Province. Industrial emissions are the largest contributors to the disease burden (>34%), with Cr, Cd, and Pb as the primary contributing metals requiring priority control. Fractional vegetation cover was identified as the key factor contributing to the reduction in their concentrations. These results underscore that prioritizing the regulation of industrial combustion, particularly concerning Cr, Cd, and Pb, and enhancing fractional vegetation cover could reduce disease burden and provide public health benefits.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473478/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13090722\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090722","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
DALYs-Based Health Risk Assessment and Key Influencing Factors of PM2.5-Bound Metals in Typical Pollution Areas of Northern China.
The health risks of PM2.5-bound metals highlight the need for burden assessment, metal prioritization, and key factor analysis to support effective air quality management, yet relevant studies remain limited. Shandong Province is one of the most polluted regions in northern China, providing an ideal setting for this investigation. We monitored 17 PM2.5-bound metals for three years across Shandong, China and performed disease burden assessment based on disability-adjusted life years (DALYs). Furthermore, key influencing factors contributing to high-hazard metals were identified through explainable machine learning. The results showed that PM2.5-bound metal concentrations were generally higher in inland areas than in coastal regions, with Ni concentrations elevated in coastal areas. K, Ca, Zn, and Mn exhibited the highest three-year average concentrations among the metals, while Cr averaged 6.12 ng/m3, significantly exceeding the recommended annual limit of 0.025 ng/m3 set by Chinese Ambient Air Quality Standards. Jinan carried the greatest burden at 4.67 DALYs per 1000 people, followed by Zibo (3.78), Weifang (2.98), and Rizhao (2.80). CKD, interstitial pneumonia, and chronic respiratory diseases account for the highest DALYs from PM2.5-bound metals in Shandong Province. Industrial emissions are the largest contributors to the disease burden (>34%), with Cr, Cd, and Pb as the primary contributing metals requiring priority control. Fractional vegetation cover was identified as the key factor contributing to the reduction in their concentrations. These results underscore that prioritizing the regulation of industrial combustion, particularly concerning Cr, Cd, and Pb, and enhancing fractional vegetation cover could reduce disease burden and provide public health benefits.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.