{"title":"姜黄素可通过p53/SLC7A11/GPX4途径抑制玉米赤霉烯酮诱导的猪肠上皮细胞铁凋亡","authors":"Dongwei Xiong, Weidong Qi, Miao Long","doi":"10.3390/toxics13090713","DOIUrl":null,"url":null,"abstract":"<p><p>Zearalenone (ZEA) is a widely distributed estrogenic mycotoxin that can disrupt intestinal barrier integrity by inducing ferroptosis, thereby posing serious risks to animal health. Curcumin (CUR), as a natural polyphenolic compound with multi-target regulatory properties, has attracted increasing attention for its antioxidative and cytoprotective effects; however, its role in ZEA-induced ferroptosis remains poorly understood. In this study, the protective effects of curcumin (CUR) were evaluated in IPEC-J2 cells by co-treating the cells with zearalenone (ZEA) at its LC<sub>50</sub> (75.23 μM) and curcumin (5 or 15 μM) for 24 h. CCK-8 assays showed that CUR significantly (<i>p</i> < 0.05) and highly significantly (<i>p</i> < 0.01) improved cell viability in the 5 μM and 15 μM groups, respectively, compared with ZEA alone. CUR co-treatment significantly (<i>p</i> < 0.01) restored glutathione (GSH) levels, and markedly (<i>p</i> < 0.01) reduced Fe<sup>2+</sup> accumulation, reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and lipid peroxidation (LPO). Transmission electron microscopy revealed pronounced mitochondrial cristae loss and membrane collapse in ZEA-treated cells, which were visibly alleviated by CUR. At the molecular level, ZEA downregulated GPX4 and SLC7A11 and upregulated ACSL4, FTH1, and p53 (all <i>p</i> < 0.01), whereas these changes were significantly reversed (<i>p</i> < 0.05 or <i>p</i> < 0.01) by CUR. In conclusion, CUR exerts cytoprotective effects against ZEA-induced ferroptosis, likely via modulation of the p53/SLC7A11/GPX4 signaling pathway.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473602/pdf/","citationCount":"0","resultStr":"{\"title\":\"Curcumin Can Inhibit Zearalenone-Induced Ferroptosis in Porcine Intestinal Epithelial Cells via the p53/SLC7A11/GPX4 Pathway.\",\"authors\":\"Dongwei Xiong, Weidong Qi, Miao Long\",\"doi\":\"10.3390/toxics13090713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zearalenone (ZEA) is a widely distributed estrogenic mycotoxin that can disrupt intestinal barrier integrity by inducing ferroptosis, thereby posing serious risks to animal health. Curcumin (CUR), as a natural polyphenolic compound with multi-target regulatory properties, has attracted increasing attention for its antioxidative and cytoprotective effects; however, its role in ZEA-induced ferroptosis remains poorly understood. In this study, the protective effects of curcumin (CUR) were evaluated in IPEC-J2 cells by co-treating the cells with zearalenone (ZEA) at its LC<sub>50</sub> (75.23 μM) and curcumin (5 or 15 μM) for 24 h. CCK-8 assays showed that CUR significantly (<i>p</i> < 0.05) and highly significantly (<i>p</i> < 0.01) improved cell viability in the 5 μM and 15 μM groups, respectively, compared with ZEA alone. CUR co-treatment significantly (<i>p</i> < 0.01) restored glutathione (GSH) levels, and markedly (<i>p</i> < 0.01) reduced Fe<sup>2+</sup> accumulation, reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and lipid peroxidation (LPO). Transmission electron microscopy revealed pronounced mitochondrial cristae loss and membrane collapse in ZEA-treated cells, which were visibly alleviated by CUR. At the molecular level, ZEA downregulated GPX4 and SLC7A11 and upregulated ACSL4, FTH1, and p53 (all <i>p</i> < 0.01), whereas these changes were significantly reversed (<i>p</i> < 0.05 or <i>p</i> < 0.01) by CUR. In conclusion, CUR exerts cytoprotective effects against ZEA-induced ferroptosis, likely via modulation of the p53/SLC7A11/GPX4 signaling pathway.</p>\",\"PeriodicalId\":23195,\"journal\":{\"name\":\"Toxics\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473602/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics13090713\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13090713","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Curcumin Can Inhibit Zearalenone-Induced Ferroptosis in Porcine Intestinal Epithelial Cells via the p53/SLC7A11/GPX4 Pathway.
Zearalenone (ZEA) is a widely distributed estrogenic mycotoxin that can disrupt intestinal barrier integrity by inducing ferroptosis, thereby posing serious risks to animal health. Curcumin (CUR), as a natural polyphenolic compound with multi-target regulatory properties, has attracted increasing attention for its antioxidative and cytoprotective effects; however, its role in ZEA-induced ferroptosis remains poorly understood. In this study, the protective effects of curcumin (CUR) were evaluated in IPEC-J2 cells by co-treating the cells with zearalenone (ZEA) at its LC50 (75.23 μM) and curcumin (5 or 15 μM) for 24 h. CCK-8 assays showed that CUR significantly (p < 0.05) and highly significantly (p < 0.01) improved cell viability in the 5 μM and 15 μM groups, respectively, compared with ZEA alone. CUR co-treatment significantly (p < 0.01) restored glutathione (GSH) levels, and markedly (p < 0.01) reduced Fe2+ accumulation, reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and lipid peroxidation (LPO). Transmission electron microscopy revealed pronounced mitochondrial cristae loss and membrane collapse in ZEA-treated cells, which were visibly alleviated by CUR. At the molecular level, ZEA downregulated GPX4 and SLC7A11 and upregulated ACSL4, FTH1, and p53 (all p < 0.01), whereas these changes were significantly reversed (p < 0.05 or p < 0.01) by CUR. In conclusion, CUR exerts cytoprotective effects against ZEA-induced ferroptosis, likely via modulation of the p53/SLC7A11/GPX4 signaling pathway.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.