{"title":"非均匀杂波条件下rcs -多普勒辅助MM-GM-PHD滤波。","authors":"Jia Wang, Baoxiong Xu, Zhenkai Zhang, Biao Jin","doi":"10.3390/s25185864","DOIUrl":null,"url":null,"abstract":"<p><p>In passive radar, the multiple model probability hypothesis density (MM-PHD) filter has demonstrated robust capability in tracking multi-maneuvering targets. Nevertheless, non-uniform clutter in practical scenarios causes misestimation of component weights, thereby generating false targets. To solve the false targets problem, a feature-matching MM-PHD (FM-MM-GM-PHD) algorithm for passive radar tracking is proposed in this paper. First, the measurement likelihood function was refined by leveraging target radar cross-section (RCS) and Doppler features to assist in suppressing false targets and reduce clutter interference. Additionally, the proposed algorithm incorporated adaptive component pruning and absorption processes to enhance tracking accuracy. Finally, a missed-alarm correction mechanism was introduced to compensate for measurement losses. Simulations of the passive radar results validated the findings that the proposed algorithm outperformed the traditional MM-PHD filter in both tracking accuracy and cardinality estimation. This superiority was particularly pronounced in non-uniform clutter environments under low detection probabilities.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473151/pdf/","citationCount":"0","resultStr":"{\"title\":\"RCS-Doppler-Assisted MM-GM-PHD Filter for Passive Radar in Non-Uniform Clutter.\",\"authors\":\"Jia Wang, Baoxiong Xu, Zhenkai Zhang, Biao Jin\",\"doi\":\"10.3390/s25185864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In passive radar, the multiple model probability hypothesis density (MM-PHD) filter has demonstrated robust capability in tracking multi-maneuvering targets. Nevertheless, non-uniform clutter in practical scenarios causes misestimation of component weights, thereby generating false targets. To solve the false targets problem, a feature-matching MM-PHD (FM-MM-GM-PHD) algorithm for passive radar tracking is proposed in this paper. First, the measurement likelihood function was refined by leveraging target radar cross-section (RCS) and Doppler features to assist in suppressing false targets and reduce clutter interference. Additionally, the proposed algorithm incorporated adaptive component pruning and absorption processes to enhance tracking accuracy. Finally, a missed-alarm correction mechanism was introduced to compensate for measurement losses. Simulations of the passive radar results validated the findings that the proposed algorithm outperformed the traditional MM-PHD filter in both tracking accuracy and cardinality estimation. This superiority was particularly pronounced in non-uniform clutter environments under low detection probabilities.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473151/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185864\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185864","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
RCS-Doppler-Assisted MM-GM-PHD Filter for Passive Radar in Non-Uniform Clutter.
In passive radar, the multiple model probability hypothesis density (MM-PHD) filter has demonstrated robust capability in tracking multi-maneuvering targets. Nevertheless, non-uniform clutter in practical scenarios causes misestimation of component weights, thereby generating false targets. To solve the false targets problem, a feature-matching MM-PHD (FM-MM-GM-PHD) algorithm for passive radar tracking is proposed in this paper. First, the measurement likelihood function was refined by leveraging target radar cross-section (RCS) and Doppler features to assist in suppressing false targets and reduce clutter interference. Additionally, the proposed algorithm incorporated adaptive component pruning and absorption processes to enhance tracking accuracy. Finally, a missed-alarm correction mechanism was introduced to compensate for measurement losses. Simulations of the passive radar results validated the findings that the proposed algorithm outperformed the traditional MM-PHD filter in both tracking accuracy and cardinality estimation. This superiority was particularly pronounced in non-uniform clutter environments under low detection probabilities.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.