非均匀杂波条件下rcs -多普勒辅助MM-GM-PHD滤波。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-19 DOI:10.3390/s25185864
Jia Wang, Baoxiong Xu, Zhenkai Zhang, Biao Jin
{"title":"非均匀杂波条件下rcs -多普勒辅助MM-GM-PHD滤波。","authors":"Jia Wang, Baoxiong Xu, Zhenkai Zhang, Biao Jin","doi":"10.3390/s25185864","DOIUrl":null,"url":null,"abstract":"<p><p>In passive radar, the multiple model probability hypothesis density (MM-PHD) filter has demonstrated robust capability in tracking multi-maneuvering targets. Nevertheless, non-uniform clutter in practical scenarios causes misestimation of component weights, thereby generating false targets. To solve the false targets problem, a feature-matching MM-PHD (FM-MM-GM-PHD) algorithm for passive radar tracking is proposed in this paper. First, the measurement likelihood function was refined by leveraging target radar cross-section (RCS) and Doppler features to assist in suppressing false targets and reduce clutter interference. Additionally, the proposed algorithm incorporated adaptive component pruning and absorption processes to enhance tracking accuracy. Finally, a missed-alarm correction mechanism was introduced to compensate for measurement losses. Simulations of the passive radar results validated the findings that the proposed algorithm outperformed the traditional MM-PHD filter in both tracking accuracy and cardinality estimation. This superiority was particularly pronounced in non-uniform clutter environments under low detection probabilities.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473151/pdf/","citationCount":"0","resultStr":"{\"title\":\"RCS-Doppler-Assisted MM-GM-PHD Filter for Passive Radar in Non-Uniform Clutter.\",\"authors\":\"Jia Wang, Baoxiong Xu, Zhenkai Zhang, Biao Jin\",\"doi\":\"10.3390/s25185864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In passive radar, the multiple model probability hypothesis density (MM-PHD) filter has demonstrated robust capability in tracking multi-maneuvering targets. Nevertheless, non-uniform clutter in practical scenarios causes misestimation of component weights, thereby generating false targets. To solve the false targets problem, a feature-matching MM-PHD (FM-MM-GM-PHD) algorithm for passive radar tracking is proposed in this paper. First, the measurement likelihood function was refined by leveraging target radar cross-section (RCS) and Doppler features to assist in suppressing false targets and reduce clutter interference. Additionally, the proposed algorithm incorporated adaptive component pruning and absorption processes to enhance tracking accuracy. Finally, a missed-alarm correction mechanism was introduced to compensate for measurement losses. Simulations of the passive radar results validated the findings that the proposed algorithm outperformed the traditional MM-PHD filter in both tracking accuracy and cardinality estimation. This superiority was particularly pronounced in non-uniform clutter environments under low detection probabilities.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473151/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185864\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185864","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在无源雷达中,多模型概率假设密度(MM-PHD)滤波器在跟踪多机动目标方面具有很强的鲁棒性。然而,在实际场景中,非均匀杂波会导致分量权重的错误估计,从而产生假目标。为解决假目标问题,提出了一种基于特征匹配的无源雷达跟踪MM-PHD (FM-MM-GM-PHD)算法。首先,利用目标雷达截面(RCS)和多普勒特征对测量似然函数进行改进,以帮助抑制假目标和减少杂波干扰;此外,该算法还引入了自适应分量修剪和吸收过程,提高了跟踪精度。最后,引入了漏报校正机制来补偿测量损失。仿真结果表明,该算法在跟踪精度和基数估计方面均优于传统的MM-PHD滤波。这种优势在低检测概率的非均匀杂波环境中尤为明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RCS-Doppler-Assisted MM-GM-PHD Filter for Passive Radar in Non-Uniform Clutter.

In passive radar, the multiple model probability hypothesis density (MM-PHD) filter has demonstrated robust capability in tracking multi-maneuvering targets. Nevertheless, non-uniform clutter in practical scenarios causes misestimation of component weights, thereby generating false targets. To solve the false targets problem, a feature-matching MM-PHD (FM-MM-GM-PHD) algorithm for passive radar tracking is proposed in this paper. First, the measurement likelihood function was refined by leveraging target radar cross-section (RCS) and Doppler features to assist in suppressing false targets and reduce clutter interference. Additionally, the proposed algorithm incorporated adaptive component pruning and absorption processes to enhance tracking accuracy. Finally, a missed-alarm correction mechanism was introduced to compensate for measurement losses. Simulations of the passive radar results validated the findings that the proposed algorithm outperformed the traditional MM-PHD filter in both tracking accuracy and cardinality estimation. This superiority was particularly pronounced in non-uniform clutter environments under low detection probabilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信