Chindiyababy Uthayakumar, Ramkumar Jayaraman, Hadi A Raja, Noman Shabbir
{"title":"量子增强型无线传感器网络(WSNs)安全节能路由协议。","authors":"Chindiyababy Uthayakumar, Ramkumar Jayaraman, Hadi A Raja, Noman Shabbir","doi":"10.3390/s25185924","DOIUrl":null,"url":null,"abstract":"<p><p>Wireless sensor networks (WSNs) play a major role in various applications, but the main challenge is to maintain security and balanced energy efficiency. Classical routing protocols struggle to achieve both energy efficiency and security because they are more vulnerable to security risks and resource limitations. This paper introduces QSEER, a novel approach that uses quantum technologies to overcome these limitations. QSEER employs quantum-inspired optimization algorithms that leverage superposition and entanglement principles to efficiently explore multiple routing possibilities, thereby identifying energy-efficient paths and reducing redundant transmissions. The proposed protocol enhances the security of data transmission against eavesdropping and tampering by using the principles of quantum mechanics, thus mitigating potential security vulnerabilities. Through extensive simulations, we demonstrated the effectiveness of QSEER in achieving both security and energy efficiency objectives, which achieves 15.1% lower energy consumption compared to state-of-the-art protocols while maintaining 99.8% data integrity under various attack scenarios, extending network lifetime by an average of 42%. These results position QSEER as a significant advancement for next-generation WSN deployments in critical applications such as environmental monitoring, smart infrastructure, and healthcare systems.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473431/pdf/","citationCount":"0","resultStr":"{\"title\":\"QSEER-Quantum-Enhanced Secure and Energy-Efficient Routing Protocol for Wireless Sensor Networks (WSNs).\",\"authors\":\"Chindiyababy Uthayakumar, Ramkumar Jayaraman, Hadi A Raja, Noman Shabbir\",\"doi\":\"10.3390/s25185924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wireless sensor networks (WSNs) play a major role in various applications, but the main challenge is to maintain security and balanced energy efficiency. Classical routing protocols struggle to achieve both energy efficiency and security because they are more vulnerable to security risks and resource limitations. This paper introduces QSEER, a novel approach that uses quantum technologies to overcome these limitations. QSEER employs quantum-inspired optimization algorithms that leverage superposition and entanglement principles to efficiently explore multiple routing possibilities, thereby identifying energy-efficient paths and reducing redundant transmissions. The proposed protocol enhances the security of data transmission against eavesdropping and tampering by using the principles of quantum mechanics, thus mitigating potential security vulnerabilities. Through extensive simulations, we demonstrated the effectiveness of QSEER in achieving both security and energy efficiency objectives, which achieves 15.1% lower energy consumption compared to state-of-the-art protocols while maintaining 99.8% data integrity under various attack scenarios, extending network lifetime by an average of 42%. These results position QSEER as a significant advancement for next-generation WSN deployments in critical applications such as environmental monitoring, smart infrastructure, and healthcare systems.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473431/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185924\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185924","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
QSEER-Quantum-Enhanced Secure and Energy-Efficient Routing Protocol for Wireless Sensor Networks (WSNs).
Wireless sensor networks (WSNs) play a major role in various applications, but the main challenge is to maintain security and balanced energy efficiency. Classical routing protocols struggle to achieve both energy efficiency and security because they are more vulnerable to security risks and resource limitations. This paper introduces QSEER, a novel approach that uses quantum technologies to overcome these limitations. QSEER employs quantum-inspired optimization algorithms that leverage superposition and entanglement principles to efficiently explore multiple routing possibilities, thereby identifying energy-efficient paths and reducing redundant transmissions. The proposed protocol enhances the security of data transmission against eavesdropping and tampering by using the principles of quantum mechanics, thus mitigating potential security vulnerabilities. Through extensive simulations, we demonstrated the effectiveness of QSEER in achieving both security and energy efficiency objectives, which achieves 15.1% lower energy consumption compared to state-of-the-art protocols while maintaining 99.8% data integrity under various attack scenarios, extending network lifetime by an average of 42%. These results position QSEER as a significant advancement for next-generation WSN deployments in critical applications such as environmental monitoring, smart infrastructure, and healthcare systems.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.