基于pretet的机器学习模型在超广角眼底图像中视网膜断裂的像素级分割。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-19 DOI:10.3390/s25185862
Takuya Takayama, Tsubasa Uto, Taiki Tsuge, Yusuke Kondo, Hironobu Tampo, Mayumi Chiba, Toshikatsu Kaburaki, Yasuo Yanagi, Hidenori Takahashi
{"title":"基于pretet的机器学习模型在超广角眼底图像中视网膜断裂的像素级分割。","authors":"Takuya Takayama, Tsubasa Uto, Taiki Tsuge, Yusuke Kondo, Hironobu Tampo, Mayumi Chiba, Toshikatsu Kaburaki, Yasuo Yanagi, Hidenori Takahashi","doi":"10.3390/s25185862","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal breaks are critical lesions that can cause retinal detachment and vision loss if not detected and treated early. Automated, accurate delineation of retinal breaks in ultra-widefield fundus (UWF) images remains challenging. In this study, we developed and validated a deep learning segmentation model based on the PraNet architecture to localize retinal breaks in break-positive cases. We trained and evaluated the model using a dataset comprising 34,867 UWF images of 8083 cases. Performance was assessed using image-level segmentation metrics, including accuracy, precision, recall, Intersection over Union (IoU), dice score, and centroid distance score. The model achieved an accuracy of 0.996, precision of 0.635, recall of 0.756, IoU of 0.539, dice score of 0.652, and centroid distance score of 0.081. To our knowledge, this is the first study to present pixel-level segmentation of retinal breaks in UWF images using deep learning. The proposed PraNet-based model showed high accuracy and robust segmentation performance, highlighting its potential for clinical application.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473856/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pixel-Level Segmentation of Retinal Breaks in Ultra-Widefield Fundus Images with a PraNet-Based Machine Learning Model.\",\"authors\":\"Takuya Takayama, Tsubasa Uto, Taiki Tsuge, Yusuke Kondo, Hironobu Tampo, Mayumi Chiba, Toshikatsu Kaburaki, Yasuo Yanagi, Hidenori Takahashi\",\"doi\":\"10.3390/s25185862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinal breaks are critical lesions that can cause retinal detachment and vision loss if not detected and treated early. Automated, accurate delineation of retinal breaks in ultra-widefield fundus (UWF) images remains challenging. In this study, we developed and validated a deep learning segmentation model based on the PraNet architecture to localize retinal breaks in break-positive cases. We trained and evaluated the model using a dataset comprising 34,867 UWF images of 8083 cases. Performance was assessed using image-level segmentation metrics, including accuracy, precision, recall, Intersection over Union (IoU), dice score, and centroid distance score. The model achieved an accuracy of 0.996, precision of 0.635, recall of 0.756, IoU of 0.539, dice score of 0.652, and centroid distance score of 0.081. To our knowledge, this is the first study to present pixel-level segmentation of retinal breaks in UWF images using deep learning. The proposed PraNet-based model showed high accuracy and robust segmentation performance, highlighting its potential for clinical application.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185862\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185862","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

视网膜断裂是严重的病变,如果不及早发现和治疗,可能导致视网膜脱离和视力丧失。在超宽视场眼底(UWF)图像中自动准确地描绘视网膜断裂仍然具有挑战性。在本研究中,我们开发并验证了一种基于PraNet架构的深度学习分割模型,用于在断裂阳性病例中定位视网膜断裂。我们使用包含8083个病例的34,867张UWF图像的数据集来训练和评估模型。使用图像级分割指标评估性能,包括准确性,精密度,召回率,交集超过联盟(IoU),骰子得分和质心距离得分。该模型的准确率为0.996,精密度为0.635,召回率为0.756,IoU为0.539,骰子得分为0.652,质心距离得分为0.081。据我们所知,这是第一个使用深度学习对UWF图像中的视网膜断裂进行像素级分割的研究。该模型具有较高的分割精度和鲁棒性,具有较好的临床应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pixel-Level Segmentation of Retinal Breaks in Ultra-Widefield Fundus Images with a PraNet-Based Machine Learning Model.

Pixel-Level Segmentation of Retinal Breaks in Ultra-Widefield Fundus Images with a PraNet-Based Machine Learning Model.

Pixel-Level Segmentation of Retinal Breaks in Ultra-Widefield Fundus Images with a PraNet-Based Machine Learning Model.

Pixel-Level Segmentation of Retinal Breaks in Ultra-Widefield Fundus Images with a PraNet-Based Machine Learning Model.

Retinal breaks are critical lesions that can cause retinal detachment and vision loss if not detected and treated early. Automated, accurate delineation of retinal breaks in ultra-widefield fundus (UWF) images remains challenging. In this study, we developed and validated a deep learning segmentation model based on the PraNet architecture to localize retinal breaks in break-positive cases. We trained and evaluated the model using a dataset comprising 34,867 UWF images of 8083 cases. Performance was assessed using image-level segmentation metrics, including accuracy, precision, recall, Intersection over Union (IoU), dice score, and centroid distance score. The model achieved an accuracy of 0.996, precision of 0.635, recall of 0.756, IoU of 0.539, dice score of 0.652, and centroid distance score of 0.081. To our knowledge, this is the first study to present pixel-level segmentation of retinal breaks in UWF images using deep learning. The proposed PraNet-based model showed high accuracy and robust segmentation performance, highlighting its potential for clinical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信