用于连续血压监测的多信号采集系统。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-21 DOI:10.3390/s25185910
Naiwen Zhang, Yu Zhang, Jintao Chen, Shaoxuan Qiu, Jinting Ma, Lihai Tan, Guo Dan
{"title":"用于连续血压监测的多信号采集系统。","authors":"Naiwen Zhang, Yu Zhang, Jintao Chen, Shaoxuan Qiu, Jinting Ma, Lihai Tan, Guo Dan","doi":"10.3390/s25185910","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous blood pressure (BP) monitoring is essential for the early detection and prevention of cardiovascular diseases like hypertension. Recently, interest in continuous BP estimation systems and algorithms has grown. Various physiological signals reflect BP variations from different perspectives, and combining multiple signals can enhance the accuracy of BP measurements. However, research integrating electrocardiogram (ECG), photoplethysmography (PPG), and impedance cardiography (ICG) signals for BP monitoring remains limited, with related technologies still in early development. A major challenge is the increased system complexity associated with acquiring multiple signals simultaneously, along with the difficulty of efficiently extracting and integrating key features for accurate BP estimation. To address this, we developed a BP monitoring system that can synchronously acquire and process ECG, PPG, and ICG signals. Optimizing the circuit design allowed ECG and ICG modules to share electrodes, reducing components and improving compactness. Using this system, we collected 400 min of signals from 40 healthy subjects, yielding 4390 records. Experiments were conducted to evaluate the system's performance in BP estimation. The results demonstrated that combining pulse wave analysis features with the XGBoost model yielded the most accurate BP predictions. Specifically, the mean absolute error for systolic blood pressure was 3.76 ± 3.98 mmHg, and for diastolic blood pressure, it was 2.71 ± 2.57 mmHg, both of which achieved grade A performance under the BHS standard. These results are comparable to or better than existing studies based on multi-signal methods. These findings suggest that the proposed system offers an efficient and practical solution for BP monitoring.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473825/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Signal Acquisition System for Continuous Blood Pressure Monitoring.\",\"authors\":\"Naiwen Zhang, Yu Zhang, Jintao Chen, Shaoxuan Qiu, Jinting Ma, Lihai Tan, Guo Dan\",\"doi\":\"10.3390/s25185910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuous blood pressure (BP) monitoring is essential for the early detection and prevention of cardiovascular diseases like hypertension. Recently, interest in continuous BP estimation systems and algorithms has grown. Various physiological signals reflect BP variations from different perspectives, and combining multiple signals can enhance the accuracy of BP measurements. However, research integrating electrocardiogram (ECG), photoplethysmography (PPG), and impedance cardiography (ICG) signals for BP monitoring remains limited, with related technologies still in early development. A major challenge is the increased system complexity associated with acquiring multiple signals simultaneously, along with the difficulty of efficiently extracting and integrating key features for accurate BP estimation. To address this, we developed a BP monitoring system that can synchronously acquire and process ECG, PPG, and ICG signals. Optimizing the circuit design allowed ECG and ICG modules to share electrodes, reducing components and improving compactness. Using this system, we collected 400 min of signals from 40 healthy subjects, yielding 4390 records. Experiments were conducted to evaluate the system's performance in BP estimation. The results demonstrated that combining pulse wave analysis features with the XGBoost model yielded the most accurate BP predictions. Specifically, the mean absolute error for systolic blood pressure was 3.76 ± 3.98 mmHg, and for diastolic blood pressure, it was 2.71 ± 2.57 mmHg, both of which achieved grade A performance under the BHS standard. These results are comparable to or better than existing studies based on multi-signal methods. These findings suggest that the proposed system offers an efficient and practical solution for BP monitoring.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473825/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185910\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185910","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

持续监测血压对于高血压等心血管疾病的早期发现和预防至关重要。最近,人们对连续BP估计系统和算法的兴趣越来越大。多种生理信号从不同角度反映血压的变化,多种信号的结合可以提高血压测量的准确性。然而,结合心电图(ECG)、光容积脉搏波(PPG)和阻抗心电图(ICG)信号进行血压监测的研究仍然有限,相关技术仍处于早期发展阶段。一个主要的挑战是与同时获取多个信号相关的系统复杂性的增加,以及有效提取和集成准确BP估计的关键特征的困难。为了解决这个问题,我们开发了一个BP监测系统,可以同步获取和处理ECG、PPG和ICG信号。优化电路设计允许ECG和ICG模块共享电极,减少组件并提高紧凑性。使用该系统,我们从40名健康受试者中收集了400分钟的信号,产生4390条记录。实验验证了该系统在BP估计中的性能。结果表明,将脉冲波分析特征与XGBoost模型相结合可以获得最准确的BP预测。其中收缩压的平均绝对误差为3.76±3.98 mmHg,舒张压的平均绝对误差为2.71±2.57 mmHg,均达到BHS标准的A级性能。这些结果与基于多信号方法的现有研究相当或更好。这些结果表明,该系统为BP监测提供了一种高效实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Signal Acquisition System for Continuous Blood Pressure Monitoring.

Continuous blood pressure (BP) monitoring is essential for the early detection and prevention of cardiovascular diseases like hypertension. Recently, interest in continuous BP estimation systems and algorithms has grown. Various physiological signals reflect BP variations from different perspectives, and combining multiple signals can enhance the accuracy of BP measurements. However, research integrating electrocardiogram (ECG), photoplethysmography (PPG), and impedance cardiography (ICG) signals for BP monitoring remains limited, with related technologies still in early development. A major challenge is the increased system complexity associated with acquiring multiple signals simultaneously, along with the difficulty of efficiently extracting and integrating key features for accurate BP estimation. To address this, we developed a BP monitoring system that can synchronously acquire and process ECG, PPG, and ICG signals. Optimizing the circuit design allowed ECG and ICG modules to share electrodes, reducing components and improving compactness. Using this system, we collected 400 min of signals from 40 healthy subjects, yielding 4390 records. Experiments were conducted to evaluate the system's performance in BP estimation. The results demonstrated that combining pulse wave analysis features with the XGBoost model yielded the most accurate BP predictions. Specifically, the mean absolute error for systolic blood pressure was 3.76 ± 3.98 mmHg, and for diastolic blood pressure, it was 2.71 ± 2.57 mmHg, both of which achieved grade A performance under the BHS standard. These results are comparable to or better than existing studies based on multi-signal methods. These findings suggest that the proposed system offers an efficient and practical solution for BP monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信