{"title":"物联网应用的安全和分散混合多人脸识别。","authors":"Erëza Abdullahu, Holger Wache, Marco Piangerelli","doi":"10.3390/s25185880","DOIUrl":null,"url":null,"abstract":"<p><p>The proliferation of smart environments and Internet of Things (IoT) applications has intensified the demand for efficient, privacy-preserving multi-face recognition systems. Conventional centralized systems suffer from latency, scalability, and security vulnerabilities. This paper presents a practical hybrid multi-face recognition framework designed for decentralized IoT deployments. Our approach leverages a pre-trained Convolutional Neural Network (VGG16) for robust feature extraction and a Support Vector Machine (SVM) for lightweight classification, enabling real-time recognition on resource-constrained devices such as IoT cameras and Raspberry Pi boards. The purpose of this work is to demonstrate the feasibility and effectiveness of a lightweight hybrid system for decentralized multi-face recognition, specifically tailored to the constraints and requirements of IoT applications. The system is validated on a custom dataset of 20 subjects collected under varied lighting conditions and facial expressions, achieving an average accuracy exceeding 95% while simultaneously recognizing multiple faces. Experimental results demonstrate the system's potential for real-world applications in surveillance, access control, and smart home environments. The proposed architecture minimizes computational load, reduces dependency on centralized servers, and enhances privacy, offering a promising step toward scalable edge AI solutions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473792/pdf/","citationCount":"0","resultStr":"{\"title\":\"Secure and Decentralized Hybrid Multi-Face Recognition for IoT Applications.\",\"authors\":\"Erëza Abdullahu, Holger Wache, Marco Piangerelli\",\"doi\":\"10.3390/s25185880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The proliferation of smart environments and Internet of Things (IoT) applications has intensified the demand for efficient, privacy-preserving multi-face recognition systems. Conventional centralized systems suffer from latency, scalability, and security vulnerabilities. This paper presents a practical hybrid multi-face recognition framework designed for decentralized IoT deployments. Our approach leverages a pre-trained Convolutional Neural Network (VGG16) for robust feature extraction and a Support Vector Machine (SVM) for lightweight classification, enabling real-time recognition on resource-constrained devices such as IoT cameras and Raspberry Pi boards. The purpose of this work is to demonstrate the feasibility and effectiveness of a lightweight hybrid system for decentralized multi-face recognition, specifically tailored to the constraints and requirements of IoT applications. The system is validated on a custom dataset of 20 subjects collected under varied lighting conditions and facial expressions, achieving an average accuracy exceeding 95% while simultaneously recognizing multiple faces. Experimental results demonstrate the system's potential for real-world applications in surveillance, access control, and smart home environments. The proposed architecture minimizes computational load, reduces dependency on centralized servers, and enhances privacy, offering a promising step toward scalable edge AI solutions.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473792/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185880\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185880","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Secure and Decentralized Hybrid Multi-Face Recognition for IoT Applications.
The proliferation of smart environments and Internet of Things (IoT) applications has intensified the demand for efficient, privacy-preserving multi-face recognition systems. Conventional centralized systems suffer from latency, scalability, and security vulnerabilities. This paper presents a practical hybrid multi-face recognition framework designed for decentralized IoT deployments. Our approach leverages a pre-trained Convolutional Neural Network (VGG16) for robust feature extraction and a Support Vector Machine (SVM) for lightweight classification, enabling real-time recognition on resource-constrained devices such as IoT cameras and Raspberry Pi boards. The purpose of this work is to demonstrate the feasibility and effectiveness of a lightweight hybrid system for decentralized multi-face recognition, specifically tailored to the constraints and requirements of IoT applications. The system is validated on a custom dataset of 20 subjects collected under varied lighting conditions and facial expressions, achieving an average accuracy exceeding 95% while simultaneously recognizing multiple faces. Experimental results demonstrate the system's potential for real-world applications in surveillance, access control, and smart home environments. The proposed architecture minimizes computational load, reduces dependency on centralized servers, and enhances privacy, offering a promising step toward scalable edge AI solutions.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.