物联网应用的安全和分散混合多人脸识别。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-19 DOI:10.3390/s25185880
Erëza Abdullahu, Holger Wache, Marco Piangerelli
{"title":"物联网应用的安全和分散混合多人脸识别。","authors":"Erëza Abdullahu, Holger Wache, Marco Piangerelli","doi":"10.3390/s25185880","DOIUrl":null,"url":null,"abstract":"<p><p>The proliferation of smart environments and Internet of Things (IoT) applications has intensified the demand for efficient, privacy-preserving multi-face recognition systems. Conventional centralized systems suffer from latency, scalability, and security vulnerabilities. This paper presents a practical hybrid multi-face recognition framework designed for decentralized IoT deployments. Our approach leverages a pre-trained Convolutional Neural Network (VGG16) for robust feature extraction and a Support Vector Machine (SVM) for lightweight classification, enabling real-time recognition on resource-constrained devices such as IoT cameras and Raspberry Pi boards. The purpose of this work is to demonstrate the feasibility and effectiveness of a lightweight hybrid system for decentralized multi-face recognition, specifically tailored to the constraints and requirements of IoT applications. The system is validated on a custom dataset of 20 subjects collected under varied lighting conditions and facial expressions, achieving an average accuracy exceeding 95% while simultaneously recognizing multiple faces. Experimental results demonstrate the system's potential for real-world applications in surveillance, access control, and smart home environments. The proposed architecture minimizes computational load, reduces dependency on centralized servers, and enhances privacy, offering a promising step toward scalable edge AI solutions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473792/pdf/","citationCount":"0","resultStr":"{\"title\":\"Secure and Decentralized Hybrid Multi-Face Recognition for IoT Applications.\",\"authors\":\"Erëza Abdullahu, Holger Wache, Marco Piangerelli\",\"doi\":\"10.3390/s25185880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The proliferation of smart environments and Internet of Things (IoT) applications has intensified the demand for efficient, privacy-preserving multi-face recognition systems. Conventional centralized systems suffer from latency, scalability, and security vulnerabilities. This paper presents a practical hybrid multi-face recognition framework designed for decentralized IoT deployments. Our approach leverages a pre-trained Convolutional Neural Network (VGG16) for robust feature extraction and a Support Vector Machine (SVM) for lightweight classification, enabling real-time recognition on resource-constrained devices such as IoT cameras and Raspberry Pi boards. The purpose of this work is to demonstrate the feasibility and effectiveness of a lightweight hybrid system for decentralized multi-face recognition, specifically tailored to the constraints and requirements of IoT applications. The system is validated on a custom dataset of 20 subjects collected under varied lighting conditions and facial expressions, achieving an average accuracy exceeding 95% while simultaneously recognizing multiple faces. Experimental results demonstrate the system's potential for real-world applications in surveillance, access control, and smart home environments. The proposed architecture minimizes computational load, reduces dependency on centralized servers, and enhances privacy, offering a promising step toward scalable edge AI solutions.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473792/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185880\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185880","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

智能环境和物联网(IoT)应用的激增加剧了对高效、保护隐私的多人脸识别系统的需求。传统的集中式系统存在延迟、可伸缩性和安全漏洞等问题。本文提出了一种用于分散物联网部署的实用混合多人脸识别框架。我们的方法利用预训练的卷积神经网络(VGG16)进行鲁棒特征提取,并利用支持向量机(SVM)进行轻量级分类,从而实现对资源受限设备(如物联网摄像头和树莓派板)的实时识别。这项工作的目的是展示用于分散多人脸识别的轻量级混合系统的可行性和有效性,专门针对物联网应用的约束和要求进行定制。该系统在不同光照条件和面部表情下收集的20个受试者的自定义数据集上进行了验证,在同时识别多张人脸的情况下,平均准确率超过95%。实验结果证明了该系统在监控、访问控制和智能家居环境中的实际应用潜力。提出的架构最大限度地减少了计算负载,减少了对集中式服务器的依赖,并增强了隐私,为可扩展的边缘人工智能解决方案迈出了有希望的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Secure and Decentralized Hybrid Multi-Face Recognition for IoT Applications.

Secure and Decentralized Hybrid Multi-Face Recognition for IoT Applications.

Secure and Decentralized Hybrid Multi-Face Recognition for IoT Applications.

Secure and Decentralized Hybrid Multi-Face Recognition for IoT Applications.

The proliferation of smart environments and Internet of Things (IoT) applications has intensified the demand for efficient, privacy-preserving multi-face recognition systems. Conventional centralized systems suffer from latency, scalability, and security vulnerabilities. This paper presents a practical hybrid multi-face recognition framework designed for decentralized IoT deployments. Our approach leverages a pre-trained Convolutional Neural Network (VGG16) for robust feature extraction and a Support Vector Machine (SVM) for lightweight classification, enabling real-time recognition on resource-constrained devices such as IoT cameras and Raspberry Pi boards. The purpose of this work is to demonstrate the feasibility and effectiveness of a lightweight hybrid system for decentralized multi-face recognition, specifically tailored to the constraints and requirements of IoT applications. The system is validated on a custom dataset of 20 subjects collected under varied lighting conditions and facial expressions, achieving an average accuracy exceeding 95% while simultaneously recognizing multiple faces. Experimental results demonstrate the system's potential for real-world applications in surveillance, access control, and smart home environments. The proposed architecture minimizes computational load, reduces dependency on centralized servers, and enhances privacy, offering a promising step toward scalable edge AI solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信