自主无人机群导航:轨迹设计范式综述。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-19 DOI:10.3390/s25185877
Kaleem Arshid, Ali Krayani, Lucio Marcenaro, David Martin Gomez, Carlo Regazzoni
{"title":"自主无人机群导航:轨迹设计范式综述。","authors":"Kaleem Arshid, Ali Krayani, Lucio Marcenaro, David Martin Gomez, Carlo Regazzoni","doi":"10.3390/s25185877","DOIUrl":null,"url":null,"abstract":"<p><p>The development of efficient and reliable trajectory-planning strategies for swarms of unmanned aerial vehicles (UAVs) is an increasingly important area of research, with applications in surveillance, search and rescue, smart agriculture, defence operations, and communication networks. This article provides a comprehensive and critical review of the various techniques available for UAV swarm trajectory planning, which can be broadly categorised into three main groups: traditional algorithms, biologically inspired metaheuristics, and modern artificial intelligence (AI)-based methods. The study examines cutting-edge research, comparing key aspects of trajectory planning, including computational efficiency, scalability, inter-UAV coordination, energy consumption, and robustness in uncertain environments. The strengths and weaknesses of these algorithms are discussed in detail, particularly in the context of collision avoidance, adaptive decision making, and the balance between centralised and decentralised control. Additionally, the review highlights hybrid frameworks that combine the global optimisation power of bio-inspired algorithms with the real-time adaptability of AI-based approaches, aiming to achieve an effective exploration-exploitation trade-off in multi-agent environments. Lastly, the article addresses the major challenges in UAV swarm trajectory planning, including multidimensional trajectory spaces, nonlinear dynamics, and real-time adaptation. It also identifies promising directions for future research. This study serves as a valuable resource for researchers, engineers, and system designers working to develop UAV swarms for real-world, integrated, intelligent, and autonomous missions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473296/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toward Autonomous UAV Swarm Navigation: A Review of Trajectory Design Paradigms.\",\"authors\":\"Kaleem Arshid, Ali Krayani, Lucio Marcenaro, David Martin Gomez, Carlo Regazzoni\",\"doi\":\"10.3390/s25185877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of efficient and reliable trajectory-planning strategies for swarms of unmanned aerial vehicles (UAVs) is an increasingly important area of research, with applications in surveillance, search and rescue, smart agriculture, defence operations, and communication networks. This article provides a comprehensive and critical review of the various techniques available for UAV swarm trajectory planning, which can be broadly categorised into three main groups: traditional algorithms, biologically inspired metaheuristics, and modern artificial intelligence (AI)-based methods. The study examines cutting-edge research, comparing key aspects of trajectory planning, including computational efficiency, scalability, inter-UAV coordination, energy consumption, and robustness in uncertain environments. The strengths and weaknesses of these algorithms are discussed in detail, particularly in the context of collision avoidance, adaptive decision making, and the balance between centralised and decentralised control. Additionally, the review highlights hybrid frameworks that combine the global optimisation power of bio-inspired algorithms with the real-time adaptability of AI-based approaches, aiming to achieve an effective exploration-exploitation trade-off in multi-agent environments. Lastly, the article addresses the major challenges in UAV swarm trajectory planning, including multidimensional trajectory spaces, nonlinear dynamics, and real-time adaptation. It also identifies promising directions for future research. This study serves as a valuable resource for researchers, engineers, and system designers working to develop UAV swarms for real-world, integrated, intelligent, and autonomous missions.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473296/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185877\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185877","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

为无人机(uav)群开发高效可靠的轨迹规划策略是一个日益重要的研究领域,在监视、搜索和救援、智能农业、国防作战和通信网络中得到应用。本文对可用于无人机群轨迹规划的各种技术进行了全面和批判性的回顾,这些技术可大致分为三大类:传统算法,生物启发的元启发式和基于现代人工智能(AI)的方法。该研究考察了前沿研究,比较了轨迹规划的关键方面,包括计算效率、可扩展性、无人机间协调、能耗和不确定环境中的鲁棒性。详细讨论了这些算法的优缺点,特别是在避免碰撞、自适应决策以及集中和分散控制之间的平衡方面。此外,该综述强调了混合框架,将生物启发算法的全局优化能力与基于人工智能的方法的实时适应性相结合,旨在实现多智能体环境中有效的探索-开发权衡。最后,本文讨论了无人机群轨迹规划的主要挑战,包括多维轨迹空间、非线性动力学和实时适应。它也为未来的研究指明了有希望的方向。这项研究为研究人员、工程师和系统设计人员开发用于现实世界、集成、智能和自主任务的无人机群提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward Autonomous UAV Swarm Navigation: A Review of Trajectory Design Paradigms.

Toward Autonomous UAV Swarm Navigation: A Review of Trajectory Design Paradigms.

Toward Autonomous UAV Swarm Navigation: A Review of Trajectory Design Paradigms.

Toward Autonomous UAV Swarm Navigation: A Review of Trajectory Design Paradigms.

The development of efficient and reliable trajectory-planning strategies for swarms of unmanned aerial vehicles (UAVs) is an increasingly important area of research, with applications in surveillance, search and rescue, smart agriculture, defence operations, and communication networks. This article provides a comprehensive and critical review of the various techniques available for UAV swarm trajectory planning, which can be broadly categorised into three main groups: traditional algorithms, biologically inspired metaheuristics, and modern artificial intelligence (AI)-based methods. The study examines cutting-edge research, comparing key aspects of trajectory planning, including computational efficiency, scalability, inter-UAV coordination, energy consumption, and robustness in uncertain environments. The strengths and weaknesses of these algorithms are discussed in detail, particularly in the context of collision avoidance, adaptive decision making, and the balance between centralised and decentralised control. Additionally, the review highlights hybrid frameworks that combine the global optimisation power of bio-inspired algorithms with the real-time adaptability of AI-based approaches, aiming to achieve an effective exploration-exploitation trade-off in multi-agent environments. Lastly, the article addresses the major challenges in UAV swarm trajectory planning, including multidimensional trajectory spaces, nonlinear dynamics, and real-time adaptation. It also identifies promising directions for future research. This study serves as a valuable resource for researchers, engineers, and system designers working to develop UAV swarms for real-world, integrated, intelligent, and autonomous missions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信