{"title":"具有波束稳定性的槽耦合馈电256元平面微带阵列用于k波段水位传感。","authors":"Kuang-Hsuan Huang, Yen-Sheng Chen","doi":"10.3390/s25185904","DOIUrl":null,"url":null,"abstract":"<p><p>Radar-based water-level monitoring requires antennas with narrow beams, high gain, and low sidelobes. Existing horn and series-fed microstrip arrays either lack compactness or suffer from frequency-dependent beam deviation that reduces sensing accuracy. This paper presents a 256-element slot-coupled planar microstrip array operating in the K-band for water-level radar. The array combines large-scale integration with slot-coupled feeding, which provides inherent 180° phase correction and stabilizes the main beam across frequency. The fabricated array has overall dimensions of 140 mm × 160 mm × 1.12 mm. Simulated results show a peak gain of 22.8 dBi with beamwidths of 5.2° (E-plane) and 4.2° (H-plane), while beam deviation remains within 0.5° across 25.9-27.0 GHz. In comparison, a series-fed array of identical aperture exhibits up to 7.5° deviation and only 15.8 dBi broadside gain. These results demonstrate that the proposed slot-coupled array provides a compact antenna solution meeting regulatory requirements and improving the accuracy of radar-based water-level monitoring systems.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Slot-Coupled Fed 256-Element Planar Microstrip Array with Beam Stability for K-Band Water Level Sensing.\",\"authors\":\"Kuang-Hsuan Huang, Yen-Sheng Chen\",\"doi\":\"10.3390/s25185904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radar-based water-level monitoring requires antennas with narrow beams, high gain, and low sidelobes. Existing horn and series-fed microstrip arrays either lack compactness or suffer from frequency-dependent beam deviation that reduces sensing accuracy. This paper presents a 256-element slot-coupled planar microstrip array operating in the K-band for water-level radar. The array combines large-scale integration with slot-coupled feeding, which provides inherent 180° phase correction and stabilizes the main beam across frequency. The fabricated array has overall dimensions of 140 mm × 160 mm × 1.12 mm. Simulated results show a peak gain of 22.8 dBi with beamwidths of 5.2° (E-plane) and 4.2° (H-plane), while beam deviation remains within 0.5° across 25.9-27.0 GHz. In comparison, a series-fed array of identical aperture exhibits up to 7.5° deviation and only 15.8 dBi broadside gain. These results demonstrate that the proposed slot-coupled array provides a compact antenna solution meeting regulatory requirements and improving the accuracy of radar-based water-level monitoring systems.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185904\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185904","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Slot-Coupled Fed 256-Element Planar Microstrip Array with Beam Stability for K-Band Water Level Sensing.
Radar-based water-level monitoring requires antennas with narrow beams, high gain, and low sidelobes. Existing horn and series-fed microstrip arrays either lack compactness or suffer from frequency-dependent beam deviation that reduces sensing accuracy. This paper presents a 256-element slot-coupled planar microstrip array operating in the K-band for water-level radar. The array combines large-scale integration with slot-coupled feeding, which provides inherent 180° phase correction and stabilizes the main beam across frequency. The fabricated array has overall dimensions of 140 mm × 160 mm × 1.12 mm. Simulated results show a peak gain of 22.8 dBi with beamwidths of 5.2° (E-plane) and 4.2° (H-plane), while beam deviation remains within 0.5° across 25.9-27.0 GHz. In comparison, a series-fed array of identical aperture exhibits up to 7.5° deviation and only 15.8 dBi broadside gain. These results demonstrate that the proposed slot-coupled array provides a compact antenna solution meeting regulatory requirements and improving the accuracy of radar-based water-level monitoring systems.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.