Hong Hua, Zhizhong Zhang, Xiaobing Liu, Wanquan Deng
{"title":"基于应变传感器的互补能源系统水轮机调速器伺服电机疲劳预测。","authors":"Hong Hua, Zhizhong Zhang, Xiaobing Liu, Wanquan Deng","doi":"10.3390/s25185860","DOIUrl":null,"url":null,"abstract":"<p><p>Hydraulic turbine governor servomotors in wind solar hydro complementary energy systems face significant fatigue failure challenges due to high-frequency regulation. This study develops an intelligent fatigue monitoring and prediction system based on strain sensors, specifically designed for the frequent regulation requirements of complementary systems. A multi-point monitoring network was constructed using resistive strain sensors, integrated with temperature and vibration sensors for multimodal data fusion. Field validation was conducted at an 18.56 MW hydroelectric unit, covering guide vane opening ranges from 13% to 63%, with system response time <1 ms and a signal-to-noise ratio of 65 dB. A simulation model combining sensor measurements with finite element simulation was established through fine-mesh modeling to identify critical fatigue locations. The finite element analysis results show excellent agreement with experimental measurements (error < 8%), validating the simulation model approach. The fork head was identified as the critical component with a stress concentration factor of 3.4, maximum stress of 51.7 MPa, and predicted fatigue life of 1.2 × 10<sup>6</sup> cycles (12-16 years). The cylindrical pin shows a maximum shear stress of 36.1 MPa, with fatigue life of 3.8 × 10<sup>6</sup> cycles (16-20 years). Monte Carlo reliability analysis indicates a system reliability of 51.2% over 20 years. This work provides an effective technical solution for the predictive maintenance and digital operation of wind solar hydro complementary systems.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473477/pdf/","citationCount":"0","resultStr":"{\"title\":\"Strain Sensor-Based Fatigue Prediction for Hydraulic Turbine Governor Servomotor in Complementary Energy Systems.\",\"authors\":\"Hong Hua, Zhizhong Zhang, Xiaobing Liu, Wanquan Deng\",\"doi\":\"10.3390/s25185860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydraulic turbine governor servomotors in wind solar hydro complementary energy systems face significant fatigue failure challenges due to high-frequency regulation. This study develops an intelligent fatigue monitoring and prediction system based on strain sensors, specifically designed for the frequent regulation requirements of complementary systems. A multi-point monitoring network was constructed using resistive strain sensors, integrated with temperature and vibration sensors for multimodal data fusion. Field validation was conducted at an 18.56 MW hydroelectric unit, covering guide vane opening ranges from 13% to 63%, with system response time <1 ms and a signal-to-noise ratio of 65 dB. A simulation model combining sensor measurements with finite element simulation was established through fine-mesh modeling to identify critical fatigue locations. The finite element analysis results show excellent agreement with experimental measurements (error < 8%), validating the simulation model approach. The fork head was identified as the critical component with a stress concentration factor of 3.4, maximum stress of 51.7 MPa, and predicted fatigue life of 1.2 × 10<sup>6</sup> cycles (12-16 years). The cylindrical pin shows a maximum shear stress of 36.1 MPa, with fatigue life of 3.8 × 10<sup>6</sup> cycles (16-20 years). Monte Carlo reliability analysis indicates a system reliability of 51.2% over 20 years. This work provides an effective technical solution for the predictive maintenance and digital operation of wind solar hydro complementary systems.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473477/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185860\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185860","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Strain Sensor-Based Fatigue Prediction for Hydraulic Turbine Governor Servomotor in Complementary Energy Systems.
Hydraulic turbine governor servomotors in wind solar hydro complementary energy systems face significant fatigue failure challenges due to high-frequency regulation. This study develops an intelligent fatigue monitoring and prediction system based on strain sensors, specifically designed for the frequent regulation requirements of complementary systems. A multi-point monitoring network was constructed using resistive strain sensors, integrated with temperature and vibration sensors for multimodal data fusion. Field validation was conducted at an 18.56 MW hydroelectric unit, covering guide vane opening ranges from 13% to 63%, with system response time <1 ms and a signal-to-noise ratio of 65 dB. A simulation model combining sensor measurements with finite element simulation was established through fine-mesh modeling to identify critical fatigue locations. The finite element analysis results show excellent agreement with experimental measurements (error < 8%), validating the simulation model approach. The fork head was identified as the critical component with a stress concentration factor of 3.4, maximum stress of 51.7 MPa, and predicted fatigue life of 1.2 × 106 cycles (12-16 years). The cylindrical pin shows a maximum shear stress of 36.1 MPa, with fatigue life of 3.8 × 106 cycles (16-20 years). Monte Carlo reliability analysis indicates a system reliability of 51.2% over 20 years. This work provides an effective technical solution for the predictive maintenance and digital operation of wind solar hydro complementary systems.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.