{"title":"基于三维激光雷达深度学习的煤场危险区域鲁棒行人检测与入侵判断","authors":"Anxin Zhao, Yekai Zhao, Qiuhong Zheng","doi":"10.3390/s25185908","DOIUrl":null,"url":null,"abstract":"<p><p>Pedestrian intrusion in coal yard work areas is a major cause of accidents, posing challenges for the safe supervision of coal yards. Existing visual detection methods suffer under poor lighting and a lack of 3D data. To overcome these limitations, this study introduces a robust pedestrian intrusion detection method based on 3D LiDAR. Our approach consists of three main components. First, we propose a novel pedestrian detection network called EFT-RCNN. Based on Voxel-RCNN, this network introduces an EnhancedVFE module to improve spatial feature extraction, employs FocalConv to reconstruct the 3D backbone network for enhanced foreground-background distinction, and utilizes TeBEVPooling to optimize bird's eye view (BEV) generation. Second, a precise 3D hazardous area is defined by combining a polygonal base surface, determined through on-site exploration, with height constraints. Finally, a point-region hierarchical judgment method is designed to calculate the spatial relationship between pedestrians and the hazardous area for graded warning. When evaluated on the public KITTI dataset, the EFT-RCNN network improved the average precision for pedestrian detection by 4.39% in 3D and 4.68% in BEV compared with the baseline, while maintaining a real-time processing speed of 28.56 FPS. In practical tests, the pedestrian detection accuracy reached 92.9%, with an average error in distance measurement of 0.054 m. The experimental results demonstrate that the proposed method effectively mitigates complex environmental interference, enables robust detection, and provides a reliable means for the proactive prevention of pedestrian intrusion accidents.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473669/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust Pedestrian Detection and Intrusion Judgment in Coal Yard Hazard Areas via 3D LiDAR-Based Deep Learning.\",\"authors\":\"Anxin Zhao, Yekai Zhao, Qiuhong Zheng\",\"doi\":\"10.3390/s25185908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pedestrian intrusion in coal yard work areas is a major cause of accidents, posing challenges for the safe supervision of coal yards. Existing visual detection methods suffer under poor lighting and a lack of 3D data. To overcome these limitations, this study introduces a robust pedestrian intrusion detection method based on 3D LiDAR. Our approach consists of three main components. First, we propose a novel pedestrian detection network called EFT-RCNN. Based on Voxel-RCNN, this network introduces an EnhancedVFE module to improve spatial feature extraction, employs FocalConv to reconstruct the 3D backbone network for enhanced foreground-background distinction, and utilizes TeBEVPooling to optimize bird's eye view (BEV) generation. Second, a precise 3D hazardous area is defined by combining a polygonal base surface, determined through on-site exploration, with height constraints. Finally, a point-region hierarchical judgment method is designed to calculate the spatial relationship between pedestrians and the hazardous area for graded warning. When evaluated on the public KITTI dataset, the EFT-RCNN network improved the average precision for pedestrian detection by 4.39% in 3D and 4.68% in BEV compared with the baseline, while maintaining a real-time processing speed of 28.56 FPS. In practical tests, the pedestrian detection accuracy reached 92.9%, with an average error in distance measurement of 0.054 m. The experimental results demonstrate that the proposed method effectively mitigates complex environmental interference, enables robust detection, and provides a reliable means for the proactive prevention of pedestrian intrusion accidents.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473669/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185908\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185908","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Robust Pedestrian Detection and Intrusion Judgment in Coal Yard Hazard Areas via 3D LiDAR-Based Deep Learning.
Pedestrian intrusion in coal yard work areas is a major cause of accidents, posing challenges for the safe supervision of coal yards. Existing visual detection methods suffer under poor lighting and a lack of 3D data. To overcome these limitations, this study introduces a robust pedestrian intrusion detection method based on 3D LiDAR. Our approach consists of three main components. First, we propose a novel pedestrian detection network called EFT-RCNN. Based on Voxel-RCNN, this network introduces an EnhancedVFE module to improve spatial feature extraction, employs FocalConv to reconstruct the 3D backbone network for enhanced foreground-background distinction, and utilizes TeBEVPooling to optimize bird's eye view (BEV) generation. Second, a precise 3D hazardous area is defined by combining a polygonal base surface, determined through on-site exploration, with height constraints. Finally, a point-region hierarchical judgment method is designed to calculate the spatial relationship between pedestrians and the hazardous area for graded warning. When evaluated on the public KITTI dataset, the EFT-RCNN network improved the average precision for pedestrian detection by 4.39% in 3D and 4.68% in BEV compared with the baseline, while maintaining a real-time processing speed of 28.56 FPS. In practical tests, the pedestrian detection accuracy reached 92.9%, with an average error in distance measurement of 0.054 m. The experimental results demonstrate that the proposed method effectively mitigates complex environmental interference, enables robust detection, and provides a reliable means for the proactive prevention of pedestrian intrusion accidents.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.