悬架预瞄控制中不平整路面信息感知方法综述。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-19 DOI:10.3390/s25185884
Yujie Shen, Kai Jing, Kecheng Sun, Changning Liu, Yi Yang, Yanling Liu
{"title":"悬架预瞄控制中不平整路面信息感知方法综述。","authors":"Yujie Shen, Kai Jing, Kecheng Sun, Changning Liu, Yi Yang, Yanling Liu","doi":"10.3390/s25185884","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate detection of road surface information is crucial for enhancing vehicle driving safety and ride comfort. To overcome the limitation that traditional suspension systems struggle to respond to road excitations in real time due to time delays in signal acquisition and control, suspension preview control technology has attracted significant attention for its proactive adjustment capability, with efficient road surface information perception being a critical prerequisite for its implementation. This paper systematically reviews road surface information detection technologies for suspension preview, focusing on the identification of potholes and speed bumps. Firstly, it summarizes relevant publicly available datasets. Secondly, it sorts out mainstream detection methods, including traditional dynamic methods, 2D image processing, 3D point cloud analysis, machine/deep learning methods, and multi-sensor fusion methods, while comparing their applicable scenarios and evaluation metrics. Furthermore, it emphasizes the core role of elevation information (e.g., pothole depth, speed bump height) in suspension preview control and summarizes elevation reconstruction technologies based on LiDAR, stereo vision, and multi-modal fusion. Finally, it prospects future research directions such as optimizing robustness, improving real-time performance, and reducing labeling costs. This review provides technical references for enhancing the accuracy of road surface information detection and the control efficiency of suspension preview systems, and it is of great significance for promoting the development of intelligent chassis.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473584/pdf/","citationCount":"0","resultStr":"{\"title\":\"Review of Uneven Road Surface Information Perception Methods for Suspension Preview Control.\",\"authors\":\"Yujie Shen, Kai Jing, Kecheng Sun, Changning Liu, Yi Yang, Yanling Liu\",\"doi\":\"10.3390/s25185884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate detection of road surface information is crucial for enhancing vehicle driving safety and ride comfort. To overcome the limitation that traditional suspension systems struggle to respond to road excitations in real time due to time delays in signal acquisition and control, suspension preview control technology has attracted significant attention for its proactive adjustment capability, with efficient road surface information perception being a critical prerequisite for its implementation. This paper systematically reviews road surface information detection technologies for suspension preview, focusing on the identification of potholes and speed bumps. Firstly, it summarizes relevant publicly available datasets. Secondly, it sorts out mainstream detection methods, including traditional dynamic methods, 2D image processing, 3D point cloud analysis, machine/deep learning methods, and multi-sensor fusion methods, while comparing their applicable scenarios and evaluation metrics. Furthermore, it emphasizes the core role of elevation information (e.g., pothole depth, speed bump height) in suspension preview control and summarizes elevation reconstruction technologies based on LiDAR, stereo vision, and multi-modal fusion. Finally, it prospects future research directions such as optimizing robustness, improving real-time performance, and reducing labeling costs. This review provides technical references for enhancing the accuracy of road surface information detection and the control efficiency of suspension preview systems, and it is of great significance for promoting the development of intelligent chassis.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473584/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185884\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185884","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

路面信息的准确检测对于提高车辆的行驶安全性和乘坐舒适性至关重要。为了克服传统悬架系统由于信号采集和控制存在时滞而难以实时响应路面激励的局限,悬架预览控制技术因其主动调节能力而备受关注,而高效的路面信息感知是实现该技术的关键前提。本文系统综述了用于悬架预展的路面信息检测技术,重点介绍了凹坑和减速带的识别。首先,总结了相关的公开数据集。其次,对传统动态方法、二维图像处理方法、三维点云分析方法、机器/深度学习方法、多传感器融合方法等主流检测方法进行梳理,并对其适用场景和评价指标进行比较。强调了坑洼深度、减速带高度等高程信息在悬架预览控制中的核心作用,总结了基于激光雷达、立体视觉、多模态融合的高程重建技术。最后展望了优化鲁棒性、提高实时性、降低标注成本等未来的研究方向。本文综述为提高路面信息检测的准确性和悬架预览系统的控制效率提供了技术参考,对推动智能底盘的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Review of Uneven Road Surface Information Perception Methods for Suspension Preview Control.

Review of Uneven Road Surface Information Perception Methods for Suspension Preview Control.

Review of Uneven Road Surface Information Perception Methods for Suspension Preview Control.

Review of Uneven Road Surface Information Perception Methods for Suspension Preview Control.

Accurate detection of road surface information is crucial for enhancing vehicle driving safety and ride comfort. To overcome the limitation that traditional suspension systems struggle to respond to road excitations in real time due to time delays in signal acquisition and control, suspension preview control technology has attracted significant attention for its proactive adjustment capability, with efficient road surface information perception being a critical prerequisite for its implementation. This paper systematically reviews road surface information detection technologies for suspension preview, focusing on the identification of potholes and speed bumps. Firstly, it summarizes relevant publicly available datasets. Secondly, it sorts out mainstream detection methods, including traditional dynamic methods, 2D image processing, 3D point cloud analysis, machine/deep learning methods, and multi-sensor fusion methods, while comparing their applicable scenarios and evaluation metrics. Furthermore, it emphasizes the core role of elevation information (e.g., pothole depth, speed bump height) in suspension preview control and summarizes elevation reconstruction technologies based on LiDAR, stereo vision, and multi-modal fusion. Finally, it prospects future research directions such as optimizing robustness, improving real-time performance, and reducing labeling costs. This review provides technical references for enhancing the accuracy of road surface information detection and the control efficiency of suspension preview systems, and it is of great significance for promoting the development of intelligent chassis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信