{"title":"MPGH-FS:一种鲁棒多时相OBIA分类的混合特征选择框架。","authors":"Xiangchao Xu, Huijiao Qiao, Zhenfan Xu, Shuya Hu","doi":"10.3390/s25185933","DOIUrl":null,"url":null,"abstract":"<p><p>Object-Based Image Analysis (OBIA) generates high-dimensional features that frequently induce the curse of dimensionality, impairing classification efficiency and generalizability in high-resolution remote sensing images. To address these challenges while simultaneously overcoming the limitations of single-criterion feature selection and enhancing temporal adaptability, we propose a novel feature selection framework named Mutual information Pre-filtering and Genetic-Hill climbing hybrid Feature Selection (MPGH-FS), which integrates Mutual Information Correlation Coefficient (MICC) pre-filtering, Genetic Algorithm (GA) global search, and Hill Climbing (HC) local optimization. Experiments based on multi-temporal GF-2 imagery from 2018 to 2023 demonstrated that MPGH-FS could reduce the feature dimension from 232 to 9, and it achieved the highest Overall Accuracy (OA) of 85.55% and a Kappa coefficient of 0.75 in full-scene classification, with training and inference times limited to 6 s and 1 min, respectively. Cross-temporal transfer experiments further validated the method's robustness to inter-annual variation within the same area, with classification accuracy fluctuations remaining below 4% across different years, outperforming comparative methods. These results confirm that MPGH-FS offers significant advantages in feature compression, classification performance, and temporal adaptability, providing a robust technical foundation for efficient and accurate multi-temporal remote sensing classification.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473330/pdf/","citationCount":"0","resultStr":"{\"title\":\"MPGH-FS: A Hybrid Feature Selection Framework for Robust Multi-Temporal OBIA Classification.\",\"authors\":\"Xiangchao Xu, Huijiao Qiao, Zhenfan Xu, Shuya Hu\",\"doi\":\"10.3390/s25185933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Object-Based Image Analysis (OBIA) generates high-dimensional features that frequently induce the curse of dimensionality, impairing classification efficiency and generalizability in high-resolution remote sensing images. To address these challenges while simultaneously overcoming the limitations of single-criterion feature selection and enhancing temporal adaptability, we propose a novel feature selection framework named Mutual information Pre-filtering and Genetic-Hill climbing hybrid Feature Selection (MPGH-FS), which integrates Mutual Information Correlation Coefficient (MICC) pre-filtering, Genetic Algorithm (GA) global search, and Hill Climbing (HC) local optimization. Experiments based on multi-temporal GF-2 imagery from 2018 to 2023 demonstrated that MPGH-FS could reduce the feature dimension from 232 to 9, and it achieved the highest Overall Accuracy (OA) of 85.55% and a Kappa coefficient of 0.75 in full-scene classification, with training and inference times limited to 6 s and 1 min, respectively. Cross-temporal transfer experiments further validated the method's robustness to inter-annual variation within the same area, with classification accuracy fluctuations remaining below 4% across different years, outperforming comparative methods. These results confirm that MPGH-FS offers significant advantages in feature compression, classification performance, and temporal adaptability, providing a robust technical foundation for efficient and accurate multi-temporal remote sensing classification.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473330/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185933\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185933","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
MPGH-FS: A Hybrid Feature Selection Framework for Robust Multi-Temporal OBIA Classification.
Object-Based Image Analysis (OBIA) generates high-dimensional features that frequently induce the curse of dimensionality, impairing classification efficiency and generalizability in high-resolution remote sensing images. To address these challenges while simultaneously overcoming the limitations of single-criterion feature selection and enhancing temporal adaptability, we propose a novel feature selection framework named Mutual information Pre-filtering and Genetic-Hill climbing hybrid Feature Selection (MPGH-FS), which integrates Mutual Information Correlation Coefficient (MICC) pre-filtering, Genetic Algorithm (GA) global search, and Hill Climbing (HC) local optimization. Experiments based on multi-temporal GF-2 imagery from 2018 to 2023 demonstrated that MPGH-FS could reduce the feature dimension from 232 to 9, and it achieved the highest Overall Accuracy (OA) of 85.55% and a Kappa coefficient of 0.75 in full-scene classification, with training and inference times limited to 6 s and 1 min, respectively. Cross-temporal transfer experiments further validated the method's robustness to inter-annual variation within the same area, with classification accuracy fluctuations remaining below 4% across different years, outperforming comparative methods. These results confirm that MPGH-FS offers significant advantages in feature compression, classification performance, and temporal adaptability, providing a robust technical foundation for efficient and accurate multi-temporal remote sensing classification.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.