{"title":"基于侧音调制的LEO卫星综合通信与导航测量信号设计。","authors":"Xue Li, Yujie Feng, Linshan Xue","doi":"10.3390/s25185890","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes an integrated OFDM signal system combining sidetone signals for communication and measurement, addressing the challenges of system complexity, resource waste, and interference caused by separated communication and measurement functions in traditional LEO satellite systems. The proposed approach effectively combines sidetone signals with OFDM technology, utilizing different short-period coprime pseudorandom codes as pilots to form composite ranging codes, while inserting multi-frequency sidetone signals at specific subcarrier points for precise ranging. A dual-mode channel estimation algorithm is designed to merge the channel estimation results from ranging pilots and sidetone signals, significantly enhancing system performance. Additionally, an adaptive ranging mode switching mechanism based on error thresholds achieves dynamic balance between ranging accuracy and spectral efficiency. Simulation results demonstrate that the proposed system can reduce bit error rate to approximately 10<sup>-3</sup> at 6 dB SNR, saving about 3 dB of transmission power compared to conventional pilot methods, while achieving centimeter-level ranging accuracy of approximately 0.02 m, improving precision by 3-4 orders of magnitude over traditional pilot methods. The proposed scheme provides a high-precision, high-efficiency integrated solution for LEO satellite communication systems. The theoretical performance assumes idealized conditions, with practical deployment requiring comprehensive error modeling for hardware imperfections and environmental variations.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473643/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated Communication and Navigation Measurement Signal Design for LEO Satellites with Side-Tone Modulation.\",\"authors\":\"Xue Li, Yujie Feng, Linshan Xue\",\"doi\":\"10.3390/s25185890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes an integrated OFDM signal system combining sidetone signals for communication and measurement, addressing the challenges of system complexity, resource waste, and interference caused by separated communication and measurement functions in traditional LEO satellite systems. The proposed approach effectively combines sidetone signals with OFDM technology, utilizing different short-period coprime pseudorandom codes as pilots to form composite ranging codes, while inserting multi-frequency sidetone signals at specific subcarrier points for precise ranging. A dual-mode channel estimation algorithm is designed to merge the channel estimation results from ranging pilots and sidetone signals, significantly enhancing system performance. Additionally, an adaptive ranging mode switching mechanism based on error thresholds achieves dynamic balance between ranging accuracy and spectral efficiency. Simulation results demonstrate that the proposed system can reduce bit error rate to approximately 10<sup>-3</sup> at 6 dB SNR, saving about 3 dB of transmission power compared to conventional pilot methods, while achieving centimeter-level ranging accuracy of approximately 0.02 m, improving precision by 3-4 orders of magnitude over traditional pilot methods. The proposed scheme provides a high-precision, high-efficiency integrated solution for LEO satellite communication systems. The theoretical performance assumes idealized conditions, with practical deployment requiring comprehensive error modeling for hardware imperfections and environmental variations.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185890\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185890","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Integrated Communication and Navigation Measurement Signal Design for LEO Satellites with Side-Tone Modulation.
This paper proposes an integrated OFDM signal system combining sidetone signals for communication and measurement, addressing the challenges of system complexity, resource waste, and interference caused by separated communication and measurement functions in traditional LEO satellite systems. The proposed approach effectively combines sidetone signals with OFDM technology, utilizing different short-period coprime pseudorandom codes as pilots to form composite ranging codes, while inserting multi-frequency sidetone signals at specific subcarrier points for precise ranging. A dual-mode channel estimation algorithm is designed to merge the channel estimation results from ranging pilots and sidetone signals, significantly enhancing system performance. Additionally, an adaptive ranging mode switching mechanism based on error thresholds achieves dynamic balance between ranging accuracy and spectral efficiency. Simulation results demonstrate that the proposed system can reduce bit error rate to approximately 10-3 at 6 dB SNR, saving about 3 dB of transmission power compared to conventional pilot methods, while achieving centimeter-level ranging accuracy of approximately 0.02 m, improving precision by 3-4 orders of magnitude over traditional pilot methods. The proposed scheme provides a high-precision, high-efficiency integrated solution for LEO satellite communication systems. The theoretical performance assumes idealized conditions, with practical deployment requiring comprehensive error modeling for hardware imperfections and environmental variations.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.