实时事故检测和应急响应的多智能体机器学习框架。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-19 DOI:10.3390/s25185845
Sadaf Ayesha, Aqsa Aslam, Muhammad Hassan Zaheer, Muhammad Burhan Khan
{"title":"实时事故检测和应急响应的多智能体机器学习框架。","authors":"Sadaf Ayesha, Aqsa Aslam, Muhammad Hassan Zaheer, Muhammad Burhan Khan","doi":"10.3390/s25185845","DOIUrl":null,"url":null,"abstract":"<p><p>Road traffic accidents remain a leading cause of fatalities worldwide, and the consequences are considerably worsened by delayed detection and emergency response. Although several machine learning-based approaches have been proposed, accident detection systems are not widely deployed, and most existing solutions fail to handle the growing complexity of modern traffic environments. This study introduces Collaborative Intelligence for Road Safety (CIRS), a novel, multi-agent, machine-learning-based framework designed for real-time accident detection, semantic scene understanding, and coordinated emergency response. Each agent in CIRS is designed for a distinct role perception, classification, description, localization, and decision-making, working collaboratively to enhance situational awareness and response efficiency. These agents integrate advanced models: YOLOv11 for high-accuracy accident detection and VideoLLaMA3 for contextual-rich scene description. CIRS bridges the gap between low-level visual analysis and high-level situational awareness. Extensive evaluation on a custom dataset comprising (5200 accident, 4800 nonaccident) frames demonstrates the effectiveness of the proposed approach. YOLOv11 achieves a top-1 accuracy of 86.5% and a perfect top-5 accuracy of 100%, ensuring reliable real-time detection. VideoLLaMA3 outperforms other vision-language models with superior factual accuracy and fewer hallucinations, generating strong results in the metrics of BLEU (0.0755), METEOR (0.2258), and ROUGE-L (0.3625). The decentralized multi-agent architecture of CIRS enables scalability, reduced latency, and the timely dispatch of emergency services while minimizing false positives.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473270/pdf/","citationCount":"0","resultStr":"{\"title\":\"CIRS: A Multi-Agent Machine Learning Framework for Real-Time Accident Detection and Emergency Response.\",\"authors\":\"Sadaf Ayesha, Aqsa Aslam, Muhammad Hassan Zaheer, Muhammad Burhan Khan\",\"doi\":\"10.3390/s25185845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Road traffic accidents remain a leading cause of fatalities worldwide, and the consequences are considerably worsened by delayed detection and emergency response. Although several machine learning-based approaches have been proposed, accident detection systems are not widely deployed, and most existing solutions fail to handle the growing complexity of modern traffic environments. This study introduces Collaborative Intelligence for Road Safety (CIRS), a novel, multi-agent, machine-learning-based framework designed for real-time accident detection, semantic scene understanding, and coordinated emergency response. Each agent in CIRS is designed for a distinct role perception, classification, description, localization, and decision-making, working collaboratively to enhance situational awareness and response efficiency. These agents integrate advanced models: YOLOv11 for high-accuracy accident detection and VideoLLaMA3 for contextual-rich scene description. CIRS bridges the gap between low-level visual analysis and high-level situational awareness. Extensive evaluation on a custom dataset comprising (5200 accident, 4800 nonaccident) frames demonstrates the effectiveness of the proposed approach. YOLOv11 achieves a top-1 accuracy of 86.5% and a perfect top-5 accuracy of 100%, ensuring reliable real-time detection. VideoLLaMA3 outperforms other vision-language models with superior factual accuracy and fewer hallucinations, generating strong results in the metrics of BLEU (0.0755), METEOR (0.2258), and ROUGE-L (0.3625). The decentralized multi-agent architecture of CIRS enables scalability, reduced latency, and the timely dispatch of emergency services while minimizing false positives.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473270/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185845\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185845","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

道路交通事故仍然是世界范围内造成死亡的主要原因,由于发现和应急反应的延迟,后果大大恶化。尽管已经提出了几种基于机器学习的方法,但事故检测系统并没有得到广泛部署,而且大多数现有的解决方案都无法处理日益复杂的现代交通环境。本研究介绍了道路安全协同智能(CIRS),这是一种新颖的、多智能体的、基于机器学习的框架,用于实时事故检测、语义场景理解和协调应急响应。CIRS中的每个agent都被设计为具有不同的角色感知、分类、描述、定位和决策,协同工作以增强态势感知和响应效率。这些智能体集成了先进的模型:用于高精度事故检测的YOLOv11和用于丰富场景描述的VideoLLaMA3。CIRS在低水平视觉分析和高水平态势感知之间架起了桥梁。对包含(5200个事故帧,4800个非事故帧)帧的自定义数据集进行了广泛的评估,证明了所提出方法的有效性。YOLOv11的top-1精度达到86.5%,top-5精度达到100%,确保了可靠的实时检测。VideoLLaMA3优于其他视觉语言模型,具有更高的事实准确性和更少的幻觉,在BLEU (0.0755), METEOR(0.2258)和ROUGE-L(0.3625)的指标上产生了强有力的结果。CIRS的分散式多代理体系结构支持可伸缩性、减少延迟和及时调度紧急服务,同时最大限度地减少误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CIRS: A Multi-Agent Machine Learning Framework for Real-Time Accident Detection and Emergency Response.

Road traffic accidents remain a leading cause of fatalities worldwide, and the consequences are considerably worsened by delayed detection and emergency response. Although several machine learning-based approaches have been proposed, accident detection systems are not widely deployed, and most existing solutions fail to handle the growing complexity of modern traffic environments. This study introduces Collaborative Intelligence for Road Safety (CIRS), a novel, multi-agent, machine-learning-based framework designed for real-time accident detection, semantic scene understanding, and coordinated emergency response. Each agent in CIRS is designed for a distinct role perception, classification, description, localization, and decision-making, working collaboratively to enhance situational awareness and response efficiency. These agents integrate advanced models: YOLOv11 for high-accuracy accident detection and VideoLLaMA3 for contextual-rich scene description. CIRS bridges the gap between low-level visual analysis and high-level situational awareness. Extensive evaluation on a custom dataset comprising (5200 accident, 4800 nonaccident) frames demonstrates the effectiveness of the proposed approach. YOLOv11 achieves a top-1 accuracy of 86.5% and a perfect top-5 accuracy of 100%, ensuring reliable real-time detection. VideoLLaMA3 outperforms other vision-language models with superior factual accuracy and fewer hallucinations, generating strong results in the metrics of BLEU (0.0755), METEOR (0.2258), and ROUGE-L (0.3625). The decentralized multi-agent architecture of CIRS enables scalability, reduced latency, and the timely dispatch of emergency services while minimizing false positives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信