Joshua T Chang, Alisha Ragatz, Anjana Ganesh, Ana P Quiros Padilla, Mikayla R Devins, Christina V Mihova, John G Milton
{"title":"使用一个飞行时间相机在跑步机上行走的质心(CoM)运动和脚的位置。","authors":"Joshua T Chang, Alisha Ragatz, Anjana Ganesh, Ana P Quiros Padilla, Mikayla R Devins, Christina V Mihova, John G Milton","doi":"10.3390/s25185850","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing the fall risk of a patient in a busy clinical setting is challenging. Tests such as the timed-up-and-go test and narrow beam walking are difficult to perform due to space restrictions. Moreover, it is not easy to directly connect the results of these tests to fundamental biomechanical principles of gait stability, which emphasize the interplay between the movements of the body's center of mass (CoM) and its base of support (BoS). Herein, we show how a 1.2 m-long treadmill and a single \"time-of-flight\" Azure Kinect camera can capture the CoM-BoS interplay within 5 min. The CoM was calculated by dividing the body into 14 segments determined from 20 joint positions measured by the Kinect camera's body tracking SDK. By tracking the CoM and joint positions from stride to stride, we can evaluate different gait stability metrics using a markerless, contactless, space-efficient approach. A large digital database of CoM movements relative to foot placement will be useful for the future development of statistical and machine learning techniques for identifying subjects at higher risk of falling.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473561/pdf/","citationCount":"0","resultStr":"{\"title\":\"Center of Mass (CoM) Motions and Foot Placement During Treadmill Walking Using One Time-of-Flight Camera.\",\"authors\":\"Joshua T Chang, Alisha Ragatz, Anjana Ganesh, Ana P Quiros Padilla, Mikayla R Devins, Christina V Mihova, John G Milton\",\"doi\":\"10.3390/s25185850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assessing the fall risk of a patient in a busy clinical setting is challenging. Tests such as the timed-up-and-go test and narrow beam walking are difficult to perform due to space restrictions. Moreover, it is not easy to directly connect the results of these tests to fundamental biomechanical principles of gait stability, which emphasize the interplay between the movements of the body's center of mass (CoM) and its base of support (BoS). Herein, we show how a 1.2 m-long treadmill and a single \\\"time-of-flight\\\" Azure Kinect camera can capture the CoM-BoS interplay within 5 min. The CoM was calculated by dividing the body into 14 segments determined from 20 joint positions measured by the Kinect camera's body tracking SDK. By tracking the CoM and joint positions from stride to stride, we can evaluate different gait stability metrics using a markerless, contactless, space-efficient approach. A large digital database of CoM movements relative to foot placement will be useful for the future development of statistical and machine learning techniques for identifying subjects at higher risk of falling.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473561/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185850\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185850","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Center of Mass (CoM) Motions and Foot Placement During Treadmill Walking Using One Time-of-Flight Camera.
Assessing the fall risk of a patient in a busy clinical setting is challenging. Tests such as the timed-up-and-go test and narrow beam walking are difficult to perform due to space restrictions. Moreover, it is not easy to directly connect the results of these tests to fundamental biomechanical principles of gait stability, which emphasize the interplay between the movements of the body's center of mass (CoM) and its base of support (BoS). Herein, we show how a 1.2 m-long treadmill and a single "time-of-flight" Azure Kinect camera can capture the CoM-BoS interplay within 5 min. The CoM was calculated by dividing the body into 14 segments determined from 20 joint positions measured by the Kinect camera's body tracking SDK. By tracking the CoM and joint positions from stride to stride, we can evaluate different gait stability metrics using a markerless, contactless, space-efficient approach. A large digital database of CoM movements relative to foot placement will be useful for the future development of statistical and machine learning techniques for identifying subjects at higher risk of falling.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.