Muhammad Farooq Siddique, Wasim Zaman, Muhammad Umar, Jae-Young Kim, Jong-Myon Kim
{"title":"铣床故障诊断的混合深度学习框架。","authors":"Muhammad Farooq Siddique, Wasim Zaman, Muhammad Umar, Jae-Young Kim, Jong-Myon Kim","doi":"10.3390/s25185866","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a hybrid fault-diagnosis framework for milling cutting tools designed to address three persistent challenges in industrial monitoring: noisy vibration signals, limited fault labels, and variability across operating conditions. The framework begins by removing baseline drift from raw signals to improve the signal-to-noise ratio. Logarithmic continuous wavelet scalograms are then constructed to provide precise time-frequency localization and reveal fault-related harmonics. To enhance feature clarity, a Canny edge operator is applied, suppressing minor artifacts and reducing intra-class variation so that key diagnostic structures are emphasized. Feature representation is obtained through a dual-branch encoder, where one pathway captures localized patterns while the other preserves long-range dependencies, resulting in compact and discriminative fault descriptors. These descriptors are integrated by an ensemble decision mechanism that assigns validation-guided weights to individual learners, ensuring reliable fault identification, improved robustness under noise, and stable performance across diverse operating conditions. Experimental validation on real-world cutting tool data demonstrates an accuracy of 99.78%, strong resilience to environmental noise, and consistent diagnostic performance under variable conditions. The framework remains lightweight, scalable, and readily deployable, providing a practical solution for high-precision tool fault diagnosis in data-constrained industrial environments.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473162/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Deep Learning Framework for Fault Diagnosis in Milling Machines.\",\"authors\":\"Muhammad Farooq Siddique, Wasim Zaman, Muhammad Umar, Jae-Young Kim, Jong-Myon Kim\",\"doi\":\"10.3390/s25185866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a hybrid fault-diagnosis framework for milling cutting tools designed to address three persistent challenges in industrial monitoring: noisy vibration signals, limited fault labels, and variability across operating conditions. The framework begins by removing baseline drift from raw signals to improve the signal-to-noise ratio. Logarithmic continuous wavelet scalograms are then constructed to provide precise time-frequency localization and reveal fault-related harmonics. To enhance feature clarity, a Canny edge operator is applied, suppressing minor artifacts and reducing intra-class variation so that key diagnostic structures are emphasized. Feature representation is obtained through a dual-branch encoder, where one pathway captures localized patterns while the other preserves long-range dependencies, resulting in compact and discriminative fault descriptors. These descriptors are integrated by an ensemble decision mechanism that assigns validation-guided weights to individual learners, ensuring reliable fault identification, improved robustness under noise, and stable performance across diverse operating conditions. Experimental validation on real-world cutting tool data demonstrates an accuracy of 99.78%, strong resilience to environmental noise, and consistent diagnostic performance under variable conditions. The framework remains lightweight, scalable, and readily deployable, providing a practical solution for high-precision tool fault diagnosis in data-constrained industrial environments.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185866\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185866","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Hybrid Deep Learning Framework for Fault Diagnosis in Milling Machines.
This paper presents a hybrid fault-diagnosis framework for milling cutting tools designed to address three persistent challenges in industrial monitoring: noisy vibration signals, limited fault labels, and variability across operating conditions. The framework begins by removing baseline drift from raw signals to improve the signal-to-noise ratio. Logarithmic continuous wavelet scalograms are then constructed to provide precise time-frequency localization and reveal fault-related harmonics. To enhance feature clarity, a Canny edge operator is applied, suppressing minor artifacts and reducing intra-class variation so that key diagnostic structures are emphasized. Feature representation is obtained through a dual-branch encoder, where one pathway captures localized patterns while the other preserves long-range dependencies, resulting in compact and discriminative fault descriptors. These descriptors are integrated by an ensemble decision mechanism that assigns validation-guided weights to individual learners, ensuring reliable fault identification, improved robustness under noise, and stable performance across diverse operating conditions. Experimental validation on real-world cutting tool data demonstrates an accuracy of 99.78%, strong resilience to environmental noise, and consistent diagnostic performance under variable conditions. The framework remains lightweight, scalable, and readily deployable, providing a practical solution for high-precision tool fault diagnosis in data-constrained industrial environments.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.