{"title":"海洋环境下地面部署无线传感器网络漂移感知聚类与恢复策略。","authors":"Lei Wang, Qian-Xun Hong","doi":"10.3390/s25185883","DOIUrl":null,"url":null,"abstract":"<p><p>Wireless sensor networks (WSNs) are deployed in terrestrial environments. However, on the sea surface, sensor nodes can drift due to ocean currents and wind; thus, network topologies continuously evolve, and the communication between nodes is frequently disrupted. These unstable connections significantly degrade data transmission stability and overall network performance. These problems are particularly significant in maritime regions where the sea state changes rapidly, thus imposing stringent technical requirements on the design of long-range, reliable, low-latency, and persistent sensing systems. This study proposes a wireless sensor network architecture for sea surface drifting nodes, which is termed Drift-Aware Routing and Clustering with Recovery (DARCR). The proposed system consists of three major components: (1) an enhanced dynamic drift model that more accurately predicts node movement for realistic ocean conditions; (2) a cluster-based framework that prevents disconnection and minimizes delay, which improves cluster stability and adaptability to dynamic environments through refined clustering and route setup mechanisms; and (3) a self-recovery routing strategy for re-establishing communication after disconnection. The proposed method is evaluated using ocean current data from the Copernicus Ocean Data Center simulating a 60-h drifting scenario around the central Taiwan Strait. The experimental results show that the average hourly disconnection rate is maintained at 6.2%, with a variance of 0.31%, and the transmission of newly sensed data is completed within 3 to 5 s, with a maximum delay of approximately 10 s. These findings demonstrate the feasibility of maintaining communication stability and low-latency data transmission for sea surface WSNs that operate in highly dynamic marine conditions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473466/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments.\",\"authors\":\"Lei Wang, Qian-Xun Hong\",\"doi\":\"10.3390/s25185883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wireless sensor networks (WSNs) are deployed in terrestrial environments. However, on the sea surface, sensor nodes can drift due to ocean currents and wind; thus, network topologies continuously evolve, and the communication between nodes is frequently disrupted. These unstable connections significantly degrade data transmission stability and overall network performance. These problems are particularly significant in maritime regions where the sea state changes rapidly, thus imposing stringent technical requirements on the design of long-range, reliable, low-latency, and persistent sensing systems. This study proposes a wireless sensor network architecture for sea surface drifting nodes, which is termed Drift-Aware Routing and Clustering with Recovery (DARCR). The proposed system consists of three major components: (1) an enhanced dynamic drift model that more accurately predicts node movement for realistic ocean conditions; (2) a cluster-based framework that prevents disconnection and minimizes delay, which improves cluster stability and adaptability to dynamic environments through refined clustering and route setup mechanisms; and (3) a self-recovery routing strategy for re-establishing communication after disconnection. The proposed method is evaluated using ocean current data from the Copernicus Ocean Data Center simulating a 60-h drifting scenario around the central Taiwan Strait. The experimental results show that the average hourly disconnection rate is maintained at 6.2%, with a variance of 0.31%, and the transmission of newly sensed data is completed within 3 to 5 s, with a maximum delay of approximately 10 s. These findings demonstrate the feasibility of maintaining communication stability and low-latency data transmission for sea surface WSNs that operate in highly dynamic marine conditions.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185883\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185883","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A Drift-Aware Clustering and Recovery Strategy for Surface-Deployed Wireless Sensor Networks in Ocean Environments.
Wireless sensor networks (WSNs) are deployed in terrestrial environments. However, on the sea surface, sensor nodes can drift due to ocean currents and wind; thus, network topologies continuously evolve, and the communication between nodes is frequently disrupted. These unstable connections significantly degrade data transmission stability and overall network performance. These problems are particularly significant in maritime regions where the sea state changes rapidly, thus imposing stringent technical requirements on the design of long-range, reliable, low-latency, and persistent sensing systems. This study proposes a wireless sensor network architecture for sea surface drifting nodes, which is termed Drift-Aware Routing and Clustering with Recovery (DARCR). The proposed system consists of three major components: (1) an enhanced dynamic drift model that more accurately predicts node movement for realistic ocean conditions; (2) a cluster-based framework that prevents disconnection and minimizes delay, which improves cluster stability and adaptability to dynamic environments through refined clustering and route setup mechanisms; and (3) a self-recovery routing strategy for re-establishing communication after disconnection. The proposed method is evaluated using ocean current data from the Copernicus Ocean Data Center simulating a 60-h drifting scenario around the central Taiwan Strait. The experimental results show that the average hourly disconnection rate is maintained at 6.2%, with a variance of 0.31%, and the transmission of newly sensed data is completed within 3 to 5 s, with a maximum delay of approximately 10 s. These findings demonstrate the feasibility of maintaining communication stability and low-latency data transmission for sea surface WSNs that operate in highly dynamic marine conditions.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.