卷积神经网络在航空系统孔洞检测中的应用。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-22 DOI:10.3390/s25185921
Garrett Madison, Grayson Michael Griser, Gage Truelson, Cole Farris, Christopher Lee Colaw, Yildirim Hurmuzlu
{"title":"卷积神经网络在航空系统孔洞检测中的应用。","authors":"Garrett Madison, Grayson Michael Griser, Gage Truelson, Cole Farris, Christopher Lee Colaw, Yildirim Hurmuzlu","doi":"10.3390/s25185921","DOIUrl":null,"url":null,"abstract":"<p><p>Foreign object debris (FOd) in rivet holes, machined holes, and fastener sites poses a critical risk to aerospace manufacturing, where current inspections rely on manual visual checks with flashlights and mirrors. These methods are slow, fatiguing, and prone to error. This work introduces HANNDI, a compact handheld inspection device that integrates controlled optics, illumination, and onboard deep learning for rapid and reliable inspection directly on the factory floor. The system performs focal sweeps, aligns and fuses the images into an all-in-focus representation, and applies a dual CNN pipeline based on the YOLO architecture: one network detects and localizes holes, while the other classifies debris. All training images were collected with the prototype, ensuring consistent geometry and lighting. On a withheld test set from a proprietary ≈3700 image dataset of aerospace assets, HANNDI achieved per-class precision and recall near 95%. An end-to-end demonstration on representative aircraft parts yielded an effective task time of 13.6 s per hole. To our knowledge, this is the first handheld automated optical inspection system that combines mechanical enforcement of imaging geometry, controlled illumination, and embedded CNN inference, providing a practical path toward robust factory floor deployment.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473337/pdf/","citationCount":"0","resultStr":"{\"title\":\"Convolutional Neural Networks for Hole Inspection in Aerospace Systems.\",\"authors\":\"Garrett Madison, Grayson Michael Griser, Gage Truelson, Cole Farris, Christopher Lee Colaw, Yildirim Hurmuzlu\",\"doi\":\"10.3390/s25185921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Foreign object debris (FOd) in rivet holes, machined holes, and fastener sites poses a critical risk to aerospace manufacturing, where current inspections rely on manual visual checks with flashlights and mirrors. These methods are slow, fatiguing, and prone to error. This work introduces HANNDI, a compact handheld inspection device that integrates controlled optics, illumination, and onboard deep learning for rapid and reliable inspection directly on the factory floor. The system performs focal sweeps, aligns and fuses the images into an all-in-focus representation, and applies a dual CNN pipeline based on the YOLO architecture: one network detects and localizes holes, while the other classifies debris. All training images were collected with the prototype, ensuring consistent geometry and lighting. On a withheld test set from a proprietary ≈3700 image dataset of aerospace assets, HANNDI achieved per-class precision and recall near 95%. An end-to-end demonstration on representative aircraft parts yielded an effective task time of 13.6 s per hole. To our knowledge, this is the first handheld automated optical inspection system that combines mechanical enforcement of imaging geometry, controlled illumination, and embedded CNN inference, providing a practical path toward robust factory floor deployment.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473337/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185921\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185921","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

铆钉孔、加工孔和紧固件部位的异物碎片(FOd)对航空航天制造业构成重大风险,目前的检查依赖于用手电筒和镜子进行人工目视检查。这些方法是缓慢的,疲劳的,并且容易出错。这项工作介绍了HANNDI,这是一种紧凑型手持式检测设备,集成了受控光学,照明和机载深度学习,可直接在工厂车间进行快速可靠的检测。该系统执行焦点扫描,将图像对齐并融合成全焦点表示,并应用基于YOLO架构的双CNN管道:一个网络检测并定位孔洞,而另一个网络对碎片进行分类。所有的训练图像都与原型一起收集,以确保几何形状和光照的一致性。在来自专有的约3700航空资产图像数据集的保留测试集上,HANNDI实现了每类精度和召回率接近95%。对代表性飞机部件的端到端演示显示,每个孔的有效任务时间为13.6 s。据我们所知,这是第一个手持式自动光学检测系统,它结合了成像几何的机械执行、受控照明和嵌入式CNN推理,为实现强大的工厂车间部署提供了一条实用的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional Neural Networks for Hole Inspection in Aerospace Systems.

Foreign object debris (FOd) in rivet holes, machined holes, and fastener sites poses a critical risk to aerospace manufacturing, where current inspections rely on manual visual checks with flashlights and mirrors. These methods are slow, fatiguing, and prone to error. This work introduces HANNDI, a compact handheld inspection device that integrates controlled optics, illumination, and onboard deep learning for rapid and reliable inspection directly on the factory floor. The system performs focal sweeps, aligns and fuses the images into an all-in-focus representation, and applies a dual CNN pipeline based on the YOLO architecture: one network detects and localizes holes, while the other classifies debris. All training images were collected with the prototype, ensuring consistent geometry and lighting. On a withheld test set from a proprietary ≈3700 image dataset of aerospace assets, HANNDI achieved per-class precision and recall near 95%. An end-to-end demonstration on representative aircraft parts yielded an effective task time of 13.6 s per hole. To our knowledge, this is the first handheld automated optical inspection system that combines mechanical enforcement of imaging geometry, controlled illumination, and embedded CNN inference, providing a practical path toward robust factory floor deployment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信