{"title":"双组分响应调控因子CitT、YvcP和YycI对枯草芽孢杆菌168菌株苎麻纤维脱胶过程中果胶和半纤维素降解的差异调控","authors":"Qi Yang, Shihang Ma, Lifeng Cheng, Xiang Zhou, Guoguo Xi, Chen Chen, Zhenghong Peng, Yuqin Hu, Si Tan, Shengwen Duan","doi":"10.3390/polym17182473","DOIUrl":null,"url":null,"abstract":"<p><p>Exploring the metabolic regulatory mechanisms of bacteria for ramie degumming and constructing more efficient engineered strains are preferred strategies to solve the technical bottleneck of high residual gum content in fibers. <i>Bacillus subtilis</i> strain 168, an advantageous bacterium for microbial degumming, was previously found to significantly up-regulate the expression of bast two-component system (TCS) response regulators CitT, YvcP, and YycI when using ramie as the sole carbon source. In this study, the genes encoding CitT, YvcP, and YycI proteins were knocked out and compared the effects between these gene knockouts and the original strain on the degumming efficiency. The aim was to identify the key TCS response regulators that significantly affect degumming efficiency and to explore the functions of these different response regulators. The results demonstrated that knockout of <i>citT</i>, <i>yvcP</i>, or <i>yycI</i> genes significantly reduced degumming efficiency. Specifically, CitT protein primarily regulated the degradation of pectin, YvcP protein mainly regulated the degradation of hemicellulose, and YycI protein was involved in the regulation of both pectin and hemicellulose degradation. Notably, the absence of CitT protein caused the most significant reduction in degumming efficiency. These findings provide valuable insights into the construction of engineered strains with high degumming efficiency for ramie fibers.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473414/pdf/","citationCount":"0","resultStr":"{\"title\":\"Two-Component Response Regulators CitT, YvcP, and YycI Differentially Control Pectin and Hemicellulose Degradation in Degumming of Ramie Fibers by <i>Bacillus subtilis</i> Strain 168.\",\"authors\":\"Qi Yang, Shihang Ma, Lifeng Cheng, Xiang Zhou, Guoguo Xi, Chen Chen, Zhenghong Peng, Yuqin Hu, Si Tan, Shengwen Duan\",\"doi\":\"10.3390/polym17182473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exploring the metabolic regulatory mechanisms of bacteria for ramie degumming and constructing more efficient engineered strains are preferred strategies to solve the technical bottleneck of high residual gum content in fibers. <i>Bacillus subtilis</i> strain 168, an advantageous bacterium for microbial degumming, was previously found to significantly up-regulate the expression of bast two-component system (TCS) response regulators CitT, YvcP, and YycI when using ramie as the sole carbon source. In this study, the genes encoding CitT, YvcP, and YycI proteins were knocked out and compared the effects between these gene knockouts and the original strain on the degumming efficiency. The aim was to identify the key TCS response regulators that significantly affect degumming efficiency and to explore the functions of these different response regulators. The results demonstrated that knockout of <i>citT</i>, <i>yvcP</i>, or <i>yycI</i> genes significantly reduced degumming efficiency. Specifically, CitT protein primarily regulated the degradation of pectin, YvcP protein mainly regulated the degradation of hemicellulose, and YycI protein was involved in the regulation of both pectin and hemicellulose degradation. Notably, the absence of CitT protein caused the most significant reduction in degumming efficiency. These findings provide valuable insights into the construction of engineered strains with high degumming efficiency for ramie fibers.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473414/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182473\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182473","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Two-Component Response Regulators CitT, YvcP, and YycI Differentially Control Pectin and Hemicellulose Degradation in Degumming of Ramie Fibers by Bacillus subtilis Strain 168.
Exploring the metabolic regulatory mechanisms of bacteria for ramie degumming and constructing more efficient engineered strains are preferred strategies to solve the technical bottleneck of high residual gum content in fibers. Bacillus subtilis strain 168, an advantageous bacterium for microbial degumming, was previously found to significantly up-regulate the expression of bast two-component system (TCS) response regulators CitT, YvcP, and YycI when using ramie as the sole carbon source. In this study, the genes encoding CitT, YvcP, and YycI proteins were knocked out and compared the effects between these gene knockouts and the original strain on the degumming efficiency. The aim was to identify the key TCS response regulators that significantly affect degumming efficiency and to explore the functions of these different response regulators. The results demonstrated that knockout of citT, yvcP, or yycI genes significantly reduced degumming efficiency. Specifically, CitT protein primarily regulated the degradation of pectin, YvcP protein mainly regulated the degradation of hemicellulose, and YycI protein was involved in the regulation of both pectin and hemicellulose degradation. Notably, the absence of CitT protein caused the most significant reduction in degumming efficiency. These findings provide valuable insights into the construction of engineered strains with high degumming efficiency for ramie fibers.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.