Claudia Cirillo, Mariagrazia Iuliano, Muhammad Shahzad, Emanuela Grazia Di Martino, Luca Gallucci, Nicola Funicello, Gerardo Iannone, Salvatore De Pasquale, Maria Sarno
{"title":"亚甲基蓝染料在3d打印阳极电极上的电化学氧化降解。","authors":"Claudia Cirillo, Mariagrazia Iuliano, Muhammad Shahzad, Emanuela Grazia Di Martino, Luca Gallucci, Nicola Funicello, Gerardo Iannone, Salvatore De Pasquale, Maria Sarno","doi":"10.3390/polym17182499","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an innovative strategy for the electrochemical degradation of methylene blue (MB) using 3D-printed helical anode electrodes fabricated from commercially available conductive Polylactic acid/carbon black (PLA/CB) filaments. The choice of PLA/CB is particularly significant, since the amorphous PLA matrix combined with a percolating carbon black network provides a biodegradable, low-cost, and chemically versatile polymer composite that can be transformed from a simple prototyping filament into a functional electrochemical platform. Through a combination of chemical/electrochemical activation and electrodeposition of copper nanoparticles (Cu NPs), the polymer electrodes were successfully converted into highly efficient catalytic platforms. Beyond material functionalization, the influence of electrode geometry was systematically investigated, comparing single-, double-, and triple-spiral helical configurations. The double-spiral geometry proved the most effective, offering the best balance between active surface area and electrolyte flow dynamics. Under mild conditions (2 V, pH 6, 0.1 M NaCl), the system achieved up to 97% MB removal, while also demonstrating remarkable stability and reusability over at least ten consecutive cycles. These results highlight the synergistic role of polymer chemistry, arrangement, and metal decoration, demonstrating how 3D printing can be a useful platform for the easy production of electrodes with different geometries, even starting from simple conductive filaments reused in sustainable and scalable functional materials for advanced wastewater treatment.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473621/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Oxidation Degradation of Methylene Blue Dye on 3D-Printed Anode Electrodes.\",\"authors\":\"Claudia Cirillo, Mariagrazia Iuliano, Muhammad Shahzad, Emanuela Grazia Di Martino, Luca Gallucci, Nicola Funicello, Gerardo Iannone, Salvatore De Pasquale, Maria Sarno\",\"doi\":\"10.3390/polym17182499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an innovative strategy for the electrochemical degradation of methylene blue (MB) using 3D-printed helical anode electrodes fabricated from commercially available conductive Polylactic acid/carbon black (PLA/CB) filaments. The choice of PLA/CB is particularly significant, since the amorphous PLA matrix combined with a percolating carbon black network provides a biodegradable, low-cost, and chemically versatile polymer composite that can be transformed from a simple prototyping filament into a functional electrochemical platform. Through a combination of chemical/electrochemical activation and electrodeposition of copper nanoparticles (Cu NPs), the polymer electrodes were successfully converted into highly efficient catalytic platforms. Beyond material functionalization, the influence of electrode geometry was systematically investigated, comparing single-, double-, and triple-spiral helical configurations. The double-spiral geometry proved the most effective, offering the best balance between active surface area and electrolyte flow dynamics. Under mild conditions (2 V, pH 6, 0.1 M NaCl), the system achieved up to 97% MB removal, while also demonstrating remarkable stability and reusability over at least ten consecutive cycles. These results highlight the synergistic role of polymer chemistry, arrangement, and metal decoration, demonstrating how 3D printing can be a useful platform for the easy production of electrodes with different geometries, even starting from simple conductive filaments reused in sustainable and scalable functional materials for advanced wastewater treatment.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473621/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182499\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182499","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种创新的电化学降解亚甲基蓝(MB)的策略,该策略使用3d打印螺旋阳极电极,该电极由市售导电聚乳酸/炭黑(PLA/CB)长丝制成。PLA/CB的选择尤其重要,因为无定形PLA基质与渗透炭黑网络相结合,提供了一种可生物降解的、低成本的、化学上通用的聚合物复合材料,可以从简单的原型长丝转变为功能性电化学平台。通过化学/电化学活化和铜纳米颗粒(Cu NPs)的电沉积相结合,聚合物电极成功转化为高效的催化平台。除了材料功能化之外,还系统地研究了电极几何形状的影响,比较了单螺旋、双螺旋和三螺旋结构。双螺旋结构被证明是最有效的,提供了活性表面积和电解质流动动力学之间的最佳平衡。在温和的条件下(2 V, pH 6, 0.1 M NaCl),该系统的MB去除率高达97%,同时在至少10个连续循环中表现出卓越的稳定性和可重复使用性。这些结果突出了聚合物化学、排列和金属装饰的协同作用,展示了3D打印如何成为一个有用的平台,可以轻松生产不同几何形状的电极,甚至可以从简单的导电细丝开始,在可持续和可扩展的功能材料中重复使用,用于高级废水处理。
Electrochemical Oxidation Degradation of Methylene Blue Dye on 3D-Printed Anode Electrodes.
This study presents an innovative strategy for the electrochemical degradation of methylene blue (MB) using 3D-printed helical anode electrodes fabricated from commercially available conductive Polylactic acid/carbon black (PLA/CB) filaments. The choice of PLA/CB is particularly significant, since the amorphous PLA matrix combined with a percolating carbon black network provides a biodegradable, low-cost, and chemically versatile polymer composite that can be transformed from a simple prototyping filament into a functional electrochemical platform. Through a combination of chemical/electrochemical activation and electrodeposition of copper nanoparticles (Cu NPs), the polymer electrodes were successfully converted into highly efficient catalytic platforms. Beyond material functionalization, the influence of electrode geometry was systematically investigated, comparing single-, double-, and triple-spiral helical configurations. The double-spiral geometry proved the most effective, offering the best balance between active surface area and electrolyte flow dynamics. Under mild conditions (2 V, pH 6, 0.1 M NaCl), the system achieved up to 97% MB removal, while also demonstrating remarkable stability and reusability over at least ten consecutive cycles. These results highlight the synergistic role of polymer chemistry, arrangement, and metal decoration, demonstrating how 3D printing can be a useful platform for the easy production of electrodes with different geometries, even starting from simple conductive filaments reused in sustainable and scalable functional materials for advanced wastewater treatment.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.