基于双像素测量的实时目标分类。

IF 3.5 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-09-20 DOI:10.3390/s25185886
Jianing Yang, Ran Chen, Yicheng Peng, Lingyun Zhang, Ting Sun, Fei Xing
{"title":"基于双像素测量的实时目标分类。","authors":"Jianing Yang, Ran Chen, Yicheng Peng, Lingyun Zhang, Ting Sun, Fei Xing","doi":"10.3390/s25185886","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving rapid and accurate object classification holds significant importance in various domains. However, conventional vision-based techniques suffer from several limitations, including high data redundancy and strong dependence on image quality. In this work, we present a high-speed, image-free object classification method based on dual-pixel measurement and normalized central moment invariants. Leveraging the complementary modulation capability of a digital micromirror device (DMD), the proposed system requires only five tailored binary illumination patterns to simultaneously extract geometric features and perform classification. The system can achieve a classification update rate of up to 4.44 kHz, offering significant improvements in both efficiency and accuracy compared to traditional image-based approaches. Numerical simulations verify the robustness of the method under similarity transformations-including translation, scaling, and rotation-while experimental validations further demonstrate reliable performance across diverse object types. This approach enables real-time, low-data throughput, and reconstruction-free classification, offering new potential for optical computing and edge intelligence applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473241/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-Time Object Classification via Dual-Pixel Measurement.\",\"authors\":\"Jianing Yang, Ran Chen, Yicheng Peng, Lingyun Zhang, Ting Sun, Fei Xing\",\"doi\":\"10.3390/s25185886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Achieving rapid and accurate object classification holds significant importance in various domains. However, conventional vision-based techniques suffer from several limitations, including high data redundancy and strong dependence on image quality. In this work, we present a high-speed, image-free object classification method based on dual-pixel measurement and normalized central moment invariants. Leveraging the complementary modulation capability of a digital micromirror device (DMD), the proposed system requires only five tailored binary illumination patterns to simultaneously extract geometric features and perform classification. The system can achieve a classification update rate of up to 4.44 kHz, offering significant improvements in both efficiency and accuracy compared to traditional image-based approaches. Numerical simulations verify the robustness of the method under similarity transformations-including translation, scaling, and rotation-while experimental validations further demonstrate reliable performance across diverse object types. This approach enables real-time, low-data throughput, and reconstruction-free classification, offering new potential for optical computing and edge intelligence applications.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473241/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185886\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185886","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

实现快速准确的目标分类在各个领域都具有重要意义。然而,传统的基于视觉的技术存在一些局限性,包括高数据冗余和对图像质量的强烈依赖。在这项工作中,我们提出了一种基于双像素测量和归一化中心矩不变量的高速无图像目标分类方法。利用数字微镜器件(DMD)的互补调制能力,该系统只需要五个定制的二进制照明模式即可同时提取几何特征并进行分类。该系统可以实现高达4.44 kHz的分类更新率,与传统的基于图像的方法相比,在效率和准确性方面都有显着提高。数值模拟验证了该方法在相似变换(包括平移、缩放和旋转)下的鲁棒性,而实验验证进一步证明了在不同对象类型上的可靠性能。这种方法实现了实时、低数据吞吐量和无重建分类,为光学计算和边缘智能应用提供了新的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Real-Time Object Classification via Dual-Pixel Measurement.

Real-Time Object Classification via Dual-Pixel Measurement.

Real-Time Object Classification via Dual-Pixel Measurement.

Real-Time Object Classification via Dual-Pixel Measurement.

Achieving rapid and accurate object classification holds significant importance in various domains. However, conventional vision-based techniques suffer from several limitations, including high data redundancy and strong dependence on image quality. In this work, we present a high-speed, image-free object classification method based on dual-pixel measurement and normalized central moment invariants. Leveraging the complementary modulation capability of a digital micromirror device (DMD), the proposed system requires only five tailored binary illumination patterns to simultaneously extract geometric features and perform classification. The system can achieve a classification update rate of up to 4.44 kHz, offering significant improvements in both efficiency and accuracy compared to traditional image-based approaches. Numerical simulations verify the robustness of the method under similarity transformations-including translation, scaling, and rotation-while experimental validations further demonstrate reliable performance across diverse object types. This approach enables real-time, low-data throughput, and reconstruction-free classification, offering new potential for optical computing and edge intelligence applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信