{"title":"聚丙烯腈前驱纤维的微观结构和性能演变:纺丝工艺的比较。","authors":"Liang Cao, Lili Zhang, Zhenbo Zhao, Shaowei Wang, Zhaowei Li, Deqi Jing, Shouchun Zhang","doi":"10.3390/polym17182504","DOIUrl":null,"url":null,"abstract":"<p><p>The microstructure of polyacrylonitrile (PAN) precursor fibers has a profound influence on the performance of carbon fibers and depends on the spinning processes and processing conditions. This study compared the evolution of the microstructures and performance of PAN fibers between the wet-spinning and dry-jet wet-spinning processes, utilizing scanning electron microscopy, small/wide-angle X-ray scattering, dynamic mechanical analysis, and single-fiber tensile testing. Both spinning processes promoted the oriented alignment of microfibrils and fibrils, improved the crystal arrangement and molecular regularity, and facilitated the transition from a two-phase (crystalline/amorphous) structure to a single-phase structure, thereby gradually improving the fibers' elastic character and mechanical properties. However, wet-spun fibers exhibited inherent defects (skin-core structure and large voids), which caused surface grooves, radial mechanical heterogeneity, and low breaking elongation during post-spinning. In contrast, dry-jet wet-spun fibers initially had a smooth surface and a homogeneous radial structure, which evolved into well-oriented, radially homogeneous structures during post-spinning. Furthermore, the dry-jet wet-spinning process produced greater increases in crystallinity (46%), crystal size (258%), and orientation index (146%) than the wet-spinning process did. The dry-jet wet-spinning process's superiority in forming and optimizing the fiber microstructure gives it greater potential for producing high-quality PAN precursor fibers.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473616/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolution of Microstructure and Performance in Polyacrylonitrile Precursor Fibers: A Comparison of Spinning Processes.\",\"authors\":\"Liang Cao, Lili Zhang, Zhenbo Zhao, Shaowei Wang, Zhaowei Li, Deqi Jing, Shouchun Zhang\",\"doi\":\"10.3390/polym17182504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The microstructure of polyacrylonitrile (PAN) precursor fibers has a profound influence on the performance of carbon fibers and depends on the spinning processes and processing conditions. This study compared the evolution of the microstructures and performance of PAN fibers between the wet-spinning and dry-jet wet-spinning processes, utilizing scanning electron microscopy, small/wide-angle X-ray scattering, dynamic mechanical analysis, and single-fiber tensile testing. Both spinning processes promoted the oriented alignment of microfibrils and fibrils, improved the crystal arrangement and molecular regularity, and facilitated the transition from a two-phase (crystalline/amorphous) structure to a single-phase structure, thereby gradually improving the fibers' elastic character and mechanical properties. However, wet-spun fibers exhibited inherent defects (skin-core structure and large voids), which caused surface grooves, radial mechanical heterogeneity, and low breaking elongation during post-spinning. In contrast, dry-jet wet-spun fibers initially had a smooth surface and a homogeneous radial structure, which evolved into well-oriented, radially homogeneous structures during post-spinning. Furthermore, the dry-jet wet-spinning process produced greater increases in crystallinity (46%), crystal size (258%), and orientation index (146%) than the wet-spinning process did. The dry-jet wet-spinning process's superiority in forming and optimizing the fiber microstructure gives it greater potential for producing high-quality PAN precursor fibers.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473616/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182504\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182504","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Evolution of Microstructure and Performance in Polyacrylonitrile Precursor Fibers: A Comparison of Spinning Processes.
The microstructure of polyacrylonitrile (PAN) precursor fibers has a profound influence on the performance of carbon fibers and depends on the spinning processes and processing conditions. This study compared the evolution of the microstructures and performance of PAN fibers between the wet-spinning and dry-jet wet-spinning processes, utilizing scanning electron microscopy, small/wide-angle X-ray scattering, dynamic mechanical analysis, and single-fiber tensile testing. Both spinning processes promoted the oriented alignment of microfibrils and fibrils, improved the crystal arrangement and molecular regularity, and facilitated the transition from a two-phase (crystalline/amorphous) structure to a single-phase structure, thereby gradually improving the fibers' elastic character and mechanical properties. However, wet-spun fibers exhibited inherent defects (skin-core structure and large voids), which caused surface grooves, radial mechanical heterogeneity, and low breaking elongation during post-spinning. In contrast, dry-jet wet-spun fibers initially had a smooth surface and a homogeneous radial structure, which evolved into well-oriented, radially homogeneous structures during post-spinning. Furthermore, the dry-jet wet-spinning process produced greater increases in crystallinity (46%), crystal size (258%), and orientation index (146%) than the wet-spinning process did. The dry-jet wet-spinning process's superiority in forming and optimizing the fiber microstructure gives it greater potential for producing high-quality PAN precursor fibers.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.