{"title":"无标记动作捕捉系统评估脑瘫儿童平衡功能的可行性。","authors":"Xiaoxia Yan, Nichola Wilson, Chengyan Sun, Yanxin Zhang","doi":"10.3390/s25185911","DOIUrl":null,"url":null,"abstract":"<p><p>Children with cerebral palsy (CP) have impaired standing balance ability, caused by increased muscle tone, muscle weakness, and joint deformity. It is necessary to investigate standing balance for children with CP. Compared with postural stability assessment using force plates, OpenCap has the potential to be used utilized as a cost-effective standing balance assessment tool, providing details about the center of mass (CoM) and joint angles. This study aims to evaluate the feasibility of using OpenCap for standing balance assessment in children with CP by (i) examining the validity of OpenCap-based CoM parameters against force plate center of pressure (CoP) measures and (ii) exploring associations between joint angles and CoM displacement. Twenty-two children with CP completed standing balance trials on a force plate-based balance tester while two smartphones recorded synchronized videos for OpenCap processing. For the correlation between CoM parameters and CoP parameters, Pearson's R values were from 0.39 to 0.94 between the two systems. After correcting the CoM parameters, the R<sup>2</sup> values ranged from 0.98 to 1.00. Regarding the relationship between the joint angles and CoM, maximum and minimum sagittal angles in the ankle were corrected with CoM displacement along the x-axis. These findings suggest that OpenCap may be a potential, cost-effective tool for standing balance assessment in children with CP.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473682/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feasibility of a Markerless Motion Capture System for Balance Function Assessment in Children with Cerebral Palsy.\",\"authors\":\"Xiaoxia Yan, Nichola Wilson, Chengyan Sun, Yanxin Zhang\",\"doi\":\"10.3390/s25185911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Children with cerebral palsy (CP) have impaired standing balance ability, caused by increased muscle tone, muscle weakness, and joint deformity. It is necessary to investigate standing balance for children with CP. Compared with postural stability assessment using force plates, OpenCap has the potential to be used utilized as a cost-effective standing balance assessment tool, providing details about the center of mass (CoM) and joint angles. This study aims to evaluate the feasibility of using OpenCap for standing balance assessment in children with CP by (i) examining the validity of OpenCap-based CoM parameters against force plate center of pressure (CoP) measures and (ii) exploring associations between joint angles and CoM displacement. Twenty-two children with CP completed standing balance trials on a force plate-based balance tester while two smartphones recorded synchronized videos for OpenCap processing. For the correlation between CoM parameters and CoP parameters, Pearson's R values were from 0.39 to 0.94 between the two systems. After correcting the CoM parameters, the R<sup>2</sup> values ranged from 0.98 to 1.00. Regarding the relationship between the joint angles and CoM, maximum and minimum sagittal angles in the ankle were corrected with CoM displacement along the x-axis. These findings suggest that OpenCap may be a potential, cost-effective tool for standing balance assessment in children with CP.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185911\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185911","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Feasibility of a Markerless Motion Capture System for Balance Function Assessment in Children with Cerebral Palsy.
Children with cerebral palsy (CP) have impaired standing balance ability, caused by increased muscle tone, muscle weakness, and joint deformity. It is necessary to investigate standing balance for children with CP. Compared with postural stability assessment using force plates, OpenCap has the potential to be used utilized as a cost-effective standing balance assessment tool, providing details about the center of mass (CoM) and joint angles. This study aims to evaluate the feasibility of using OpenCap for standing balance assessment in children with CP by (i) examining the validity of OpenCap-based CoM parameters against force plate center of pressure (CoP) measures and (ii) exploring associations between joint angles and CoM displacement. Twenty-two children with CP completed standing balance trials on a force plate-based balance tester while two smartphones recorded synchronized videos for OpenCap processing. For the correlation between CoM parameters and CoP parameters, Pearson's R values were from 0.39 to 0.94 between the two systems. After correcting the CoM parameters, the R2 values ranged from 0.98 to 1.00. Regarding the relationship between the joint angles and CoM, maximum and minimum sagittal angles in the ankle were corrected with CoM displacement along the x-axis. These findings suggest that OpenCap may be a potential, cost-effective tool for standing balance assessment in children with CP.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.