{"title":"牲畜实时自动监测:定量框架和挑战。","authors":"Sarah Brocklehurst, Zhou Fang, Adam Butler","doi":"10.3390/s25185871","DOIUrl":null,"url":null,"abstract":"<p><p>The use of automated sensors has grown rapidly in recent years, with sensor data now routinely used for monitoring in a wide range of situations, including human health and behaviour, the environment, wildlife, and agriculture. Livestock farming is a key area of application, and our primary focus here, but the issues discussed are widely applicable. There is the potential to massively increase the use of empirical data for decision-making in real time, and a range of quantitative methods, including machine learning and statistical methods, have been proposed for this purpose within the literature. In many areas, however, development and validation of quantitative approaches are still needed in order for these methods to effectively inform decision-making. Within the context of livestock farming, for example, it must be practically feasible to repeatedly apply the method dynamically in real time on farms in order to optimise decision-making, and we discuss the challenges in using quantitative approaches for this purpose. It is also crucial to evaluate and compare the applied performance of methods in a fair and robust way-such comparisons are currently lacking within the literature on livestock farming, and we outline approaches to addressing this key gap.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 18","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-Time Auto-Monitoring of Livestock: Quantitative Framework and Challenges.\",\"authors\":\"Sarah Brocklehurst, Zhou Fang, Adam Butler\",\"doi\":\"10.3390/s25185871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of automated sensors has grown rapidly in recent years, with sensor data now routinely used for monitoring in a wide range of situations, including human health and behaviour, the environment, wildlife, and agriculture. Livestock farming is a key area of application, and our primary focus here, but the issues discussed are widely applicable. There is the potential to massively increase the use of empirical data for decision-making in real time, and a range of quantitative methods, including machine learning and statistical methods, have been proposed for this purpose within the literature. In many areas, however, development and validation of quantitative approaches are still needed in order for these methods to effectively inform decision-making. Within the context of livestock farming, for example, it must be practically feasible to repeatedly apply the method dynamically in real time on farms in order to optimise decision-making, and we discuss the challenges in using quantitative approaches for this purpose. It is also crucial to evaluate and compare the applied performance of methods in a fair and robust way-such comparisons are currently lacking within the literature on livestock farming, and we outline approaches to addressing this key gap.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 18\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25185871\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25185871","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Real-Time Auto-Monitoring of Livestock: Quantitative Framework and Challenges.
The use of automated sensors has grown rapidly in recent years, with sensor data now routinely used for monitoring in a wide range of situations, including human health and behaviour, the environment, wildlife, and agriculture. Livestock farming is a key area of application, and our primary focus here, but the issues discussed are widely applicable. There is the potential to massively increase the use of empirical data for decision-making in real time, and a range of quantitative methods, including machine learning and statistical methods, have been proposed for this purpose within the literature. In many areas, however, development and validation of quantitative approaches are still needed in order for these methods to effectively inform decision-making. Within the context of livestock farming, for example, it must be practically feasible to repeatedly apply the method dynamically in real time on farms in order to optimise decision-making, and we discuss the challenges in using quantitative approaches for this purpose. It is also crucial to evaluate and compare the applied performance of methods in a fair and robust way-such comparisons are currently lacking within the literature on livestock farming, and we outline approaches to addressing this key gap.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.