Pin-Yu Lin, Li-Nai Chen, Chien-Fu Tseng, Yi-Shao Chen, Hung-Yu Lin, Thi Thuy Tien Vo, Tzu-Yu Peng, I-Ta Lee
{"title":"牙齿增白剂和聚合物载体:有效性、安全性和临床前景。","authors":"Pin-Yu Lin, Li-Nai Chen, Chien-Fu Tseng, Yi-Shao Chen, Hung-Yu Lin, Thi Thuy Tien Vo, Tzu-Yu Peng, I-Ta Lee","doi":"10.3390/polym17182545","DOIUrl":null,"url":null,"abstract":"<p><p>Tooth whitening is increasingly sought in both clinical and home settings, raising concerns about the efficacy and safety of various whitening agents and their delivery systems. This narrative review compares the whitening performance and biocompatibility of active ingredients, including hydrogen peroxide, carbamide peroxide, activated charcoal, sodium bicarbonate, fluoride compounds, and blue covarine, with particular emphasis on the role of polymer-based carriers in formulation strategies. Hydrogen peroxide and carbamide peroxide remain the most effective agents for intrinsic whitening, but are associated with risks of enamel surface alterations, microhardness reduction, and potential cytotoxicity, particularly at higher concentrations. Sodium bicarbonate provides moderate whitening effects through extrinsic stain removal, while fluoride compounds play a supportive role by reducing demineralization and tooth sensitivity, thereby preserving enamel integrity. These properties make them valuable adjuncts or alternatives for patients with high sensitivity risks. Blue covarine offers immediate optical effects without inducing intrinsic color changes, whereas activated charcoal poses risks of enamel abrasion and surface roughness with limited long-term efficacy. Polymer-based carriers such as Carbopol gels, polyvinylpyrrolidone, and hydroxypropyl methylcellulose are incorporated into whitening formulations to improve viscosity, adhesion, and modulate the release of active ingredients. These polymers might help minimize diffusion of bleaching agents into deeper dental tissues, potentially reducing cytotoxic effects, and may improve handling characteristics. However, dedicated studies evaluating the unique advantages of polymers in different whitening systems remain limited. A comprehensive understanding of both the active ingredients and delivery technologies is critical to balancing esthetic outcomes with long-term oral health. From a clinical perspective, polymer-based carriers might contribute to reducing whitening-related tooth sensitivity, improving patient comfort, and providing more predictable treatment outcomes. Continued research is needed to clarify optimal formulations and application protocols, ensuring safer and more effective tooth-whitening practices in both clinical and home-use scenarios.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473685/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tooth-Whitening Agents and Polymer-Based Carriers: Efficacy, Safety, and Clinical Perspectives.\",\"authors\":\"Pin-Yu Lin, Li-Nai Chen, Chien-Fu Tseng, Yi-Shao Chen, Hung-Yu Lin, Thi Thuy Tien Vo, Tzu-Yu Peng, I-Ta Lee\",\"doi\":\"10.3390/polym17182545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tooth whitening is increasingly sought in both clinical and home settings, raising concerns about the efficacy and safety of various whitening agents and their delivery systems. This narrative review compares the whitening performance and biocompatibility of active ingredients, including hydrogen peroxide, carbamide peroxide, activated charcoal, sodium bicarbonate, fluoride compounds, and blue covarine, with particular emphasis on the role of polymer-based carriers in formulation strategies. Hydrogen peroxide and carbamide peroxide remain the most effective agents for intrinsic whitening, but are associated with risks of enamel surface alterations, microhardness reduction, and potential cytotoxicity, particularly at higher concentrations. Sodium bicarbonate provides moderate whitening effects through extrinsic stain removal, while fluoride compounds play a supportive role by reducing demineralization and tooth sensitivity, thereby preserving enamel integrity. These properties make them valuable adjuncts or alternatives for patients with high sensitivity risks. Blue covarine offers immediate optical effects without inducing intrinsic color changes, whereas activated charcoal poses risks of enamel abrasion and surface roughness with limited long-term efficacy. Polymer-based carriers such as Carbopol gels, polyvinylpyrrolidone, and hydroxypropyl methylcellulose are incorporated into whitening formulations to improve viscosity, adhesion, and modulate the release of active ingredients. These polymers might help minimize diffusion of bleaching agents into deeper dental tissues, potentially reducing cytotoxic effects, and may improve handling characteristics. However, dedicated studies evaluating the unique advantages of polymers in different whitening systems remain limited. A comprehensive understanding of both the active ingredients and delivery technologies is critical to balancing esthetic outcomes with long-term oral health. From a clinical perspective, polymer-based carriers might contribute to reducing whitening-related tooth sensitivity, improving patient comfort, and providing more predictable treatment outcomes. Continued research is needed to clarify optimal formulations and application protocols, ensuring safer and more effective tooth-whitening practices in both clinical and home-use scenarios.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473685/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182545\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182545","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Tooth-Whitening Agents and Polymer-Based Carriers: Efficacy, Safety, and Clinical Perspectives.
Tooth whitening is increasingly sought in both clinical and home settings, raising concerns about the efficacy and safety of various whitening agents and their delivery systems. This narrative review compares the whitening performance and biocompatibility of active ingredients, including hydrogen peroxide, carbamide peroxide, activated charcoal, sodium bicarbonate, fluoride compounds, and blue covarine, with particular emphasis on the role of polymer-based carriers in formulation strategies. Hydrogen peroxide and carbamide peroxide remain the most effective agents for intrinsic whitening, but are associated with risks of enamel surface alterations, microhardness reduction, and potential cytotoxicity, particularly at higher concentrations. Sodium bicarbonate provides moderate whitening effects through extrinsic stain removal, while fluoride compounds play a supportive role by reducing demineralization and tooth sensitivity, thereby preserving enamel integrity. These properties make them valuable adjuncts or alternatives for patients with high sensitivity risks. Blue covarine offers immediate optical effects without inducing intrinsic color changes, whereas activated charcoal poses risks of enamel abrasion and surface roughness with limited long-term efficacy. Polymer-based carriers such as Carbopol gels, polyvinylpyrrolidone, and hydroxypropyl methylcellulose are incorporated into whitening formulations to improve viscosity, adhesion, and modulate the release of active ingredients. These polymers might help minimize diffusion of bleaching agents into deeper dental tissues, potentially reducing cytotoxic effects, and may improve handling characteristics. However, dedicated studies evaluating the unique advantages of polymers in different whitening systems remain limited. A comprehensive understanding of both the active ingredients and delivery technologies is critical to balancing esthetic outcomes with long-term oral health. From a clinical perspective, polymer-based carriers might contribute to reducing whitening-related tooth sensitivity, improving patient comfort, and providing more predictable treatment outcomes. Continued research is needed to clarify optimal formulations and application protocols, ensuring safer and more effective tooth-whitening practices in both clinical and home-use scenarios.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.