纳米sic负载对聚酰亚胺高频电应力下表面放电性能的影响。

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-18 DOI:10.3390/polym17182526
Ruoqing Hong, Qingmin Li, Huan Li, Qingming Xin
{"title":"纳米sic负载对聚酰亚胺高频电应力下表面放电性能的影响。","authors":"Ruoqing Hong, Qingmin Li, Huan Li, Qingming Xin","doi":"10.3390/polym17182526","DOIUrl":null,"url":null,"abstract":"<p><p>This study targets insulation challenges in high-frequency power transformers (HFPTs), which are an integral part of the high-voltage, high-capacity isolated DC/DC converter under development for offshore renewable energy systems. We propose a nano-silicon carbide (SiC)-doped polyimide (PI) winding insulation strategy to enhance discharge resistance and thermal stability under high-frequency electric stress. Experimental results show that 10 wt% SiC doping significantly improves insulation performance, extending failure time from 17 to 50 min and reducing maximum discharge amplitude by 76%, owing to enhanced charge trapping and interfacial polarization suppression. Surface and volume resistivity measurements further confirmed the improvement; at 120 °C, the 10 wt% SiC composite maintained high surface resistivity 3.30 × 10<sup>14</sup> Ω and volume resistivity 1.41 × 10<sup>15</sup> Ω·cm, significantly outperforming pure PI. In contrast, 20 wt% SiC, though still resistive, showed reduced stability due to agglomeration and interfacial defects, with a surface resistivity of 2.07 × 10<sup>14</sup> Ω and degraded dielectric performance. Dielectric analysis revealed that 10 wt% SiC suppressed dielectric constant and loss across the frequency range, while 20 wt% SiC exhibited increased values at high frequency. These results highlight 10 wt% SiC as an optimal formulation for HFPT winding insulation.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473874/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Nano-SiC Loading on Surface Discharge Performance of Polyimide at High-Frequency Electric Stress.\",\"authors\":\"Ruoqing Hong, Qingmin Li, Huan Li, Qingming Xin\",\"doi\":\"10.3390/polym17182526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study targets insulation challenges in high-frequency power transformers (HFPTs), which are an integral part of the high-voltage, high-capacity isolated DC/DC converter under development for offshore renewable energy systems. We propose a nano-silicon carbide (SiC)-doped polyimide (PI) winding insulation strategy to enhance discharge resistance and thermal stability under high-frequency electric stress. Experimental results show that 10 wt% SiC doping significantly improves insulation performance, extending failure time from 17 to 50 min and reducing maximum discharge amplitude by 76%, owing to enhanced charge trapping and interfacial polarization suppression. Surface and volume resistivity measurements further confirmed the improvement; at 120 °C, the 10 wt% SiC composite maintained high surface resistivity 3.30 × 10<sup>14</sup> Ω and volume resistivity 1.41 × 10<sup>15</sup> Ω·cm, significantly outperforming pure PI. In contrast, 20 wt% SiC, though still resistive, showed reduced stability due to agglomeration and interfacial defects, with a surface resistivity of 2.07 × 10<sup>14</sup> Ω and degraded dielectric performance. Dielectric analysis revealed that 10 wt% SiC suppressed dielectric constant and loss across the frequency range, while 20 wt% SiC exhibited increased values at high frequency. These results highlight 10 wt% SiC as an optimal formulation for HFPT winding insulation.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473874/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182526\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182526","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

高频电力变压器(hfpt)是海上可再生能源系统正在开发的高压、大容量隔离DC/DC转换器的组成部分,该研究针对高频电力变压器(hfpt)的绝缘挑战。我们提出了一种纳米碳化硅(SiC)掺杂聚酰亚胺(PI)的绕组绝缘策略,以提高高频电应力下的放电电阻和热稳定性。实验结果表明,10 wt% SiC掺杂能显著提高绝缘性能,使失效时间从17 min延长至50 min,最大放电幅度降低76%,增强了电荷捕获和界面极化抑制。表面和体积电阻率测量进一步证实了这一改进;在120°C时,10 wt% SiC复合材料的表面电阻率为3.30 × 1014 Ω,体积电阻率为1.41 × 1015 Ω·cm,明显优于纯PI。相比之下,20% wt%的SiC虽然仍然具有电阻性,但由于团聚和界面缺陷,其稳定性降低,表面电阻率为2.07 × 1014 Ω,并且介电性能下降。电介质分析表明,10 wt%的SiC在整个频率范围内抑制了介电常数和损耗,而20 wt%的SiC在高频范围内增加了介电常数和损耗。这些结果突出了10 wt% SiC作为HFPT绕组绝缘的最佳配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Nano-SiC Loading on Surface Discharge Performance of Polyimide at High-Frequency Electric Stress.

This study targets insulation challenges in high-frequency power transformers (HFPTs), which are an integral part of the high-voltage, high-capacity isolated DC/DC converter under development for offshore renewable energy systems. We propose a nano-silicon carbide (SiC)-doped polyimide (PI) winding insulation strategy to enhance discharge resistance and thermal stability under high-frequency electric stress. Experimental results show that 10 wt% SiC doping significantly improves insulation performance, extending failure time from 17 to 50 min and reducing maximum discharge amplitude by 76%, owing to enhanced charge trapping and interfacial polarization suppression. Surface and volume resistivity measurements further confirmed the improvement; at 120 °C, the 10 wt% SiC composite maintained high surface resistivity 3.30 × 1014 Ω and volume resistivity 1.41 × 1015 Ω·cm, significantly outperforming pure PI. In contrast, 20 wt% SiC, though still resistive, showed reduced stability due to agglomeration and interfacial defects, with a surface resistivity of 2.07 × 1014 Ω and degraded dielectric performance. Dielectric analysis revealed that 10 wt% SiC suppressed dielectric constant and loss across the frequency range, while 20 wt% SiC exhibited increased values at high frequency. These results highlight 10 wt% SiC as an optimal formulation for HFPT winding insulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信