基于双树脂体系的3d打印连续亚麻纤维增强复合材料。

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-17 DOI:10.3390/polym17182515
Yu Long, Zhongsen Zhang, Zhixiong Bi, Kunkun Fu, Yan Li
{"title":"基于双树脂体系的3d打印连续亚麻纤维增强复合材料。","authors":"Yu Long, Zhongsen Zhang, Zhixiong Bi, Kunkun Fu, Yan Li","doi":"10.3390/polym17182515","DOIUrl":null,"url":null,"abstract":"<p><p>Compared with traditional continuous plant fiber-reinforced thermoplastic composites, their 3D-printed counterparts offer distinct advantages in the rapid fabrication of complex geometries with integrated forming capabilities. However, the impregnation process of continuous plant fiber yarn with thermoplastic resin presents greater technical challenges compared to conventional synthetic fibers (e.g., carbon or glass fibers) typically employed in continuous fiber composites, owing to the yarn's unique twisted structure. In addition, low molding pressure during 3D printing makes resin impregnation more difficult. To address the impregnation difficulty within plant fiber yarn during 3D printing, we employed two low-viscosity resins, liquid thermoplastic resin (specifically, reactive methyl methacrylate) and thermosetting epoxy resin, to pre-impregnate flax yarns, respectively. A dual-resin prepreg filament is developed for 3D printing of flax fiber-reinforced composites, involving re-coating pre-impregnated flax yarns with polylactic acid. The experimental results indicate that liquid thermoplastic resin-impregnated composites exhibit enhanced mechanical properties, surpassing the epoxy system by 39% in tensile strength and 29% in modulus, attributed to improved impregnation and better interfacial compatibility. This preparation method demonstrates the feasibility of utilizing liquid thermoplastic resin in 3D-printed continuous plant fiber composites, offering a novel approach for producing highly impregnated continuous fiber filaments.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473954/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D-Printed Continuous Flax Fiber-Reinforced Composites Based on a Dual-Resin System.\",\"authors\":\"Yu Long, Zhongsen Zhang, Zhixiong Bi, Kunkun Fu, Yan Li\",\"doi\":\"10.3390/polym17182515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Compared with traditional continuous plant fiber-reinforced thermoplastic composites, their 3D-printed counterparts offer distinct advantages in the rapid fabrication of complex geometries with integrated forming capabilities. However, the impregnation process of continuous plant fiber yarn with thermoplastic resin presents greater technical challenges compared to conventional synthetic fibers (e.g., carbon or glass fibers) typically employed in continuous fiber composites, owing to the yarn's unique twisted structure. In addition, low molding pressure during 3D printing makes resin impregnation more difficult. To address the impregnation difficulty within plant fiber yarn during 3D printing, we employed two low-viscosity resins, liquid thermoplastic resin (specifically, reactive methyl methacrylate) and thermosetting epoxy resin, to pre-impregnate flax yarns, respectively. A dual-resin prepreg filament is developed for 3D printing of flax fiber-reinforced composites, involving re-coating pre-impregnated flax yarns with polylactic acid. The experimental results indicate that liquid thermoplastic resin-impregnated composites exhibit enhanced mechanical properties, surpassing the epoxy system by 39% in tensile strength and 29% in modulus, attributed to improved impregnation and better interfacial compatibility. This preparation method demonstrates the feasibility of utilizing liquid thermoplastic resin in 3D-printed continuous plant fiber composites, offering a novel approach for producing highly impregnated continuous fiber filaments.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473954/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182515\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182515","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

与传统的连续植物纤维增强热塑性复合材料相比,3d打印材料在快速制造复杂几何形状方面具有明显的优势,具有集成成型能力。然而,与连续纤维复合材料中通常使用的传统合成纤维(例如碳纤维或玻璃纤维)相比,连续植物纤维纱线与热塑性树脂的浸渍过程具有更大的技术挑战,因为纱线具有独特的扭曲结构。此外,3D打印过程中的低成型压力使得树脂浸渍更加困难。为了解决植物纤维纱线在3D打印过程中的浸渍困难,我们使用了两种低粘度树脂,液体热塑性树脂(特别是活性甲基丙烯酸甲酯)和热固性环氧树脂,分别对亚麻纱线进行预浸渍。研究了一种用于亚麻纤维增强复合材料3D打印的双树脂预浸长丝,该长丝是用聚乳酸对预浸亚麻纱线进行再涂层。实验结果表明,液态热塑性树脂浸渍复合材料的力学性能得到了提高,拉伸强度比环氧树脂体系高39%,模量比环氧树脂体系高29%,这是由于浸渍的改善和界面相容性的改善。该制备方法证明了液体热塑性树脂在3d打印连续植物纤维复合材料中的可行性,为生产高浸渍连续纤维长丝提供了一种新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-Printed Continuous Flax Fiber-Reinforced Composites Based on a Dual-Resin System.

Compared with traditional continuous plant fiber-reinforced thermoplastic composites, their 3D-printed counterparts offer distinct advantages in the rapid fabrication of complex geometries with integrated forming capabilities. However, the impregnation process of continuous plant fiber yarn with thermoplastic resin presents greater technical challenges compared to conventional synthetic fibers (e.g., carbon or glass fibers) typically employed in continuous fiber composites, owing to the yarn's unique twisted structure. In addition, low molding pressure during 3D printing makes resin impregnation more difficult. To address the impregnation difficulty within plant fiber yarn during 3D printing, we employed two low-viscosity resins, liquid thermoplastic resin (specifically, reactive methyl methacrylate) and thermosetting epoxy resin, to pre-impregnate flax yarns, respectively. A dual-resin prepreg filament is developed for 3D printing of flax fiber-reinforced composites, involving re-coating pre-impregnated flax yarns with polylactic acid. The experimental results indicate that liquid thermoplastic resin-impregnated composites exhibit enhanced mechanical properties, surpassing the epoxy system by 39% in tensile strength and 29% in modulus, attributed to improved impregnation and better interfacial compatibility. This preparation method demonstrates the feasibility of utilizing liquid thermoplastic resin in 3D-printed continuous plant fiber composites, offering a novel approach for producing highly impregnated continuous fiber filaments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信