厚度对CFRP复合材料单轴压缩破坏行为的影响。

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-17 DOI:10.3390/polym17182518
Zixing Qin, Huiming Ding, Shiyang Zhu, Can Jin, Jian Wang, Jiaxin Li, Han Wang
{"title":"厚度对CFRP复合材料单轴压缩破坏行为的影响。","authors":"Zixing Qin, Huiming Ding, Shiyang Zhu, Can Jin, Jian Wang, Jiaxin Li, Han Wang","doi":"10.3390/polym17182518","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon Fiber Reinforced Composite (CFRP) is widely used in deep-sea pressure-resistant structures. With the increase in submergence depth demand leading to the increase in the thickness of the CFRP shell plate, there is a significant thickness effect on its compression performance. In order to study the mechanism of the decrease in compression performance of the laminate, uniaxial compression tests, interlaminar shear tests, out-of-plane tensile tests, damage characterization, and FEM analysis were carried out on three thicknesses of laminates. The results showed that the compressive strength, interlaminar shear strength, out-of-plane tensile strength of laminates and FEM compression model decreased by 10.3%, 12.7%, 23.6%, and 13.6% when the thickness of the laminate was increased from 2 mm to 12 mm. Concurrently, the compression failure mechanism is transformed from the overall strength failure to the instability-crush failure mode caused by the initial delamination. The effects of out-of-plane tensile strength and interlaminar shear strength on compressive properties were also considered. It provides support for the regulation of compression performance of large-thickness laminates and the safety of deep-sea pressure-resistant structures in service.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473190/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Thickness on the Uniaxial Compression Failure Behavior of CFRP Laminates.\",\"authors\":\"Zixing Qin, Huiming Ding, Shiyang Zhu, Can Jin, Jian Wang, Jiaxin Li, Han Wang\",\"doi\":\"10.3390/polym17182518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon Fiber Reinforced Composite (CFRP) is widely used in deep-sea pressure-resistant structures. With the increase in submergence depth demand leading to the increase in the thickness of the CFRP shell plate, there is a significant thickness effect on its compression performance. In order to study the mechanism of the decrease in compression performance of the laminate, uniaxial compression tests, interlaminar shear tests, out-of-plane tensile tests, damage characterization, and FEM analysis were carried out on three thicknesses of laminates. The results showed that the compressive strength, interlaminar shear strength, out-of-plane tensile strength of laminates and FEM compression model decreased by 10.3%, 12.7%, 23.6%, and 13.6% when the thickness of the laminate was increased from 2 mm to 12 mm. Concurrently, the compression failure mechanism is transformed from the overall strength failure to the instability-crush failure mode caused by the initial delamination. The effects of out-of-plane tensile strength and interlaminar shear strength on compressive properties were also considered. It provides support for the regulation of compression performance of large-thickness laminates and the safety of deep-sea pressure-resistant structures in service.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182518\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182518","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维增强复合材料(CFRP)广泛应用于深海耐压结构。随着沉深需求的增加导致CFRP壳板厚度的增加,其抗压性能存在显著的厚度效应。为了研究层合板压缩性能下降的机理,对三种厚度层合板进行了单轴压缩试验、层间剪切试验、面外拉伸试验、损伤表征和有限元分析。结果表明:当层压板厚度从2 mm增加到12 mm时,层压板的抗压强度、层间抗剪强度、面外抗拉强度和有限元压缩模型分别降低10.3%、12.7%、23.6%和13.6%;同时,压缩破坏机制由整体强度破坏转变为初始分层引起的失稳-破碎破坏模式。考虑了面外抗拉强度和层间抗剪强度对抗压性能的影响。为大厚度层压板抗压性能的调控和在役深海耐压结构的安全提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Thickness on the Uniaxial Compression Failure Behavior of CFRP Laminates.

Carbon Fiber Reinforced Composite (CFRP) is widely used in deep-sea pressure-resistant structures. With the increase in submergence depth demand leading to the increase in the thickness of the CFRP shell plate, there is a significant thickness effect on its compression performance. In order to study the mechanism of the decrease in compression performance of the laminate, uniaxial compression tests, interlaminar shear tests, out-of-plane tensile tests, damage characterization, and FEM analysis were carried out on three thicknesses of laminates. The results showed that the compressive strength, interlaminar shear strength, out-of-plane tensile strength of laminates and FEM compression model decreased by 10.3%, 12.7%, 23.6%, and 13.6% when the thickness of the laminate was increased from 2 mm to 12 mm. Concurrently, the compression failure mechanism is transformed from the overall strength failure to the instability-crush failure mode caused by the initial delamination. The effects of out-of-plane tensile strength and interlaminar shear strength on compressive properties were also considered. It provides support for the regulation of compression performance of large-thickness laminates and the safety of deep-sea pressure-resistant structures in service.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信