Zixing Qin, Huiming Ding, Shiyang Zhu, Can Jin, Jian Wang, Jiaxin Li, Han Wang
{"title":"厚度对CFRP复合材料单轴压缩破坏行为的影响。","authors":"Zixing Qin, Huiming Ding, Shiyang Zhu, Can Jin, Jian Wang, Jiaxin Li, Han Wang","doi":"10.3390/polym17182518","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon Fiber Reinforced Composite (CFRP) is widely used in deep-sea pressure-resistant structures. With the increase in submergence depth demand leading to the increase in the thickness of the CFRP shell plate, there is a significant thickness effect on its compression performance. In order to study the mechanism of the decrease in compression performance of the laminate, uniaxial compression tests, interlaminar shear tests, out-of-plane tensile tests, damage characterization, and FEM analysis were carried out on three thicknesses of laminates. The results showed that the compressive strength, interlaminar shear strength, out-of-plane tensile strength of laminates and FEM compression model decreased by 10.3%, 12.7%, 23.6%, and 13.6% when the thickness of the laminate was increased from 2 mm to 12 mm. Concurrently, the compression failure mechanism is transformed from the overall strength failure to the instability-crush failure mode caused by the initial delamination. The effects of out-of-plane tensile strength and interlaminar shear strength on compressive properties were also considered. It provides support for the regulation of compression performance of large-thickness laminates and the safety of deep-sea pressure-resistant structures in service.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473190/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Thickness on the Uniaxial Compression Failure Behavior of CFRP Laminates.\",\"authors\":\"Zixing Qin, Huiming Ding, Shiyang Zhu, Can Jin, Jian Wang, Jiaxin Li, Han Wang\",\"doi\":\"10.3390/polym17182518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon Fiber Reinforced Composite (CFRP) is widely used in deep-sea pressure-resistant structures. With the increase in submergence depth demand leading to the increase in the thickness of the CFRP shell plate, there is a significant thickness effect on its compression performance. In order to study the mechanism of the decrease in compression performance of the laminate, uniaxial compression tests, interlaminar shear tests, out-of-plane tensile tests, damage characterization, and FEM analysis were carried out on three thicknesses of laminates. The results showed that the compressive strength, interlaminar shear strength, out-of-plane tensile strength of laminates and FEM compression model decreased by 10.3%, 12.7%, 23.6%, and 13.6% when the thickness of the laminate was increased from 2 mm to 12 mm. Concurrently, the compression failure mechanism is transformed from the overall strength failure to the instability-crush failure mode caused by the initial delamination. The effects of out-of-plane tensile strength and interlaminar shear strength on compressive properties were also considered. It provides support for the regulation of compression performance of large-thickness laminates and the safety of deep-sea pressure-resistant structures in service.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182518\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182518","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of Thickness on the Uniaxial Compression Failure Behavior of CFRP Laminates.
Carbon Fiber Reinforced Composite (CFRP) is widely used in deep-sea pressure-resistant structures. With the increase in submergence depth demand leading to the increase in the thickness of the CFRP shell plate, there is a significant thickness effect on its compression performance. In order to study the mechanism of the decrease in compression performance of the laminate, uniaxial compression tests, interlaminar shear tests, out-of-plane tensile tests, damage characterization, and FEM analysis were carried out on three thicknesses of laminates. The results showed that the compressive strength, interlaminar shear strength, out-of-plane tensile strength of laminates and FEM compression model decreased by 10.3%, 12.7%, 23.6%, and 13.6% when the thickness of the laminate was increased from 2 mm to 12 mm. Concurrently, the compression failure mechanism is transformed from the overall strength failure to the instability-crush failure mode caused by the initial delamination. The effects of out-of-plane tensile strength and interlaminar shear strength on compressive properties were also considered. It provides support for the regulation of compression performance of large-thickness laminates and the safety of deep-sea pressure-resistant structures in service.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.