电连接器注射成型中高性能介电强度聚合物的仿真分析与优化。

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-12 DOI:10.3390/polym17182465
Fuat Tan
{"title":"电连接器注射成型中高性能介电强度聚合物的仿真分析与优化。","authors":"Fuat Tan","doi":"10.3390/polym17182465","DOIUrl":null,"url":null,"abstract":"<p><p>In this research, the thermal and structural responses of high-performance dielectric strength polymers in the injection molding process for multi-pin electrical connectors were thoroughly studied using Moldflow simulations and optimized via a Box-Behnken experimental design under the Response Surface Methodology (RSM). Injection molding analyses were performed on Polyether-ether-ketone (PEEK), Polyetherimide (PEI), and Polyamide-imide (PAI) polymers using the MS3102A 16S-1P electrical connector model. In the conducted simulations, the melt temperature, injection time, and mold open time were evaluated as three fundamental process parameters through multivariate analysis. The volumetric shrinkage, sink mark depth, residual stress, warpage, and surface temperature homogeneity were considered as the major output qualities. According to the results, the PAI material provided superior thermal stability with an average heat removal capacity of 0.127 kW, whereas the PEI material exhibited the most homogeneous cooling behavior with a surface temperature of 45.5 °C. The minimum warpage was found to be 0.254 mm, whereas the sink mark depth was recorded within the range of 0.018-0.031 mm and the rate of volume shrinkage was between 1.03% and 1.41% in the investigations. The PAI material gave the maximum residual stress of 81.9 MPa in oriented regions of the mold. This study fills a considerable gap in the field by investigating material choice and process parameter adjustments via multivariate analysis, particularly for decision making in the production of high-reliability electrical components.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simulation-Based Analysis and Optimization of High-Performance Dielectric Strength Polymers in the Injection Molding of Electrical Connectors.\",\"authors\":\"Fuat Tan\",\"doi\":\"10.3390/polym17182465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this research, the thermal and structural responses of high-performance dielectric strength polymers in the injection molding process for multi-pin electrical connectors were thoroughly studied using Moldflow simulations and optimized via a Box-Behnken experimental design under the Response Surface Methodology (RSM). Injection molding analyses were performed on Polyether-ether-ketone (PEEK), Polyetherimide (PEI), and Polyamide-imide (PAI) polymers using the MS3102A 16S-1P electrical connector model. In the conducted simulations, the melt temperature, injection time, and mold open time were evaluated as three fundamental process parameters through multivariate analysis. The volumetric shrinkage, sink mark depth, residual stress, warpage, and surface temperature homogeneity were considered as the major output qualities. According to the results, the PAI material provided superior thermal stability with an average heat removal capacity of 0.127 kW, whereas the PEI material exhibited the most homogeneous cooling behavior with a surface temperature of 45.5 °C. The minimum warpage was found to be 0.254 mm, whereas the sink mark depth was recorded within the range of 0.018-0.031 mm and the rate of volume shrinkage was between 1.03% and 1.41% in the investigations. The PAI material gave the maximum residual stress of 81.9 MPa in oriented regions of the mold. This study fills a considerable gap in the field by investigating material choice and process parameter adjustments via multivariate analysis, particularly for decision making in the production of high-reliability electrical components.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182465\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182465","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,使用Moldflow模拟深入研究了高性能介电强度聚合物在多针电连接器注射成型过程中的热响应和结构响应,并通过响应面法(RSM)下的Box-Behnken实验设计进行了优化。使用MS3102A 16S-1P电连接器模型对聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)和聚酰胺酰亚胺(PAI)聚合物进行注射成型分析。在进行的模拟中,熔体温度、注射时间和开模时间通过多变量分析作为三个基本工艺参数进行评估。体积收缩率、凹痕深度、残余应力、翘曲和表面温度均匀性被认为是主要的输出质量。结果表明,PAI材料具有优异的热稳定性,平均散热能力为0.127 kW,而PEI材料表现出最均匀的冷却行为,表面温度为45.5℃。最小翘曲量为0.254 mm,沉降深度为0.018 ~ 0.031 mm,体积收缩率为1.03% ~ 1.41%。PAI材料在模具取向区域的最大残余应力为81.9 MPa。本研究通过多变量分析调查材料选择和工艺参数调整,填补了该领域的相当大的空白,特别是在高可靠性电气元件的生产决策方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation-Based Analysis and Optimization of High-Performance Dielectric Strength Polymers in the Injection Molding of Electrical Connectors.

In this research, the thermal and structural responses of high-performance dielectric strength polymers in the injection molding process for multi-pin electrical connectors were thoroughly studied using Moldflow simulations and optimized via a Box-Behnken experimental design under the Response Surface Methodology (RSM). Injection molding analyses were performed on Polyether-ether-ketone (PEEK), Polyetherimide (PEI), and Polyamide-imide (PAI) polymers using the MS3102A 16S-1P electrical connector model. In the conducted simulations, the melt temperature, injection time, and mold open time were evaluated as three fundamental process parameters through multivariate analysis. The volumetric shrinkage, sink mark depth, residual stress, warpage, and surface temperature homogeneity were considered as the major output qualities. According to the results, the PAI material provided superior thermal stability with an average heat removal capacity of 0.127 kW, whereas the PEI material exhibited the most homogeneous cooling behavior with a surface temperature of 45.5 °C. The minimum warpage was found to be 0.254 mm, whereas the sink mark depth was recorded within the range of 0.018-0.031 mm and the rate of volume shrinkage was between 1.03% and 1.41% in the investigations. The PAI material gave the maximum residual stress of 81.9 MPa in oriented regions of the mold. This study fills a considerable gap in the field by investigating material choice and process parameter adjustments via multivariate analysis, particularly for decision making in the production of high-reliability electrical components.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信