{"title":"电连接器注射成型中高性能介电强度聚合物的仿真分析与优化。","authors":"Fuat Tan","doi":"10.3390/polym17182465","DOIUrl":null,"url":null,"abstract":"<p><p>In this research, the thermal and structural responses of high-performance dielectric strength polymers in the injection molding process for multi-pin electrical connectors were thoroughly studied using Moldflow simulations and optimized via a Box-Behnken experimental design under the Response Surface Methodology (RSM). Injection molding analyses were performed on Polyether-ether-ketone (PEEK), Polyetherimide (PEI), and Polyamide-imide (PAI) polymers using the MS3102A 16S-1P electrical connector model. In the conducted simulations, the melt temperature, injection time, and mold open time were evaluated as three fundamental process parameters through multivariate analysis. The volumetric shrinkage, sink mark depth, residual stress, warpage, and surface temperature homogeneity were considered as the major output qualities. According to the results, the PAI material provided superior thermal stability with an average heat removal capacity of 0.127 kW, whereas the PEI material exhibited the most homogeneous cooling behavior with a surface temperature of 45.5 °C. The minimum warpage was found to be 0.254 mm, whereas the sink mark depth was recorded within the range of 0.018-0.031 mm and the rate of volume shrinkage was between 1.03% and 1.41% in the investigations. The PAI material gave the maximum residual stress of 81.9 MPa in oriented regions of the mold. This study fills a considerable gap in the field by investigating material choice and process parameter adjustments via multivariate analysis, particularly for decision making in the production of high-reliability electrical components.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simulation-Based Analysis and Optimization of High-Performance Dielectric Strength Polymers in the Injection Molding of Electrical Connectors.\",\"authors\":\"Fuat Tan\",\"doi\":\"10.3390/polym17182465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this research, the thermal and structural responses of high-performance dielectric strength polymers in the injection molding process for multi-pin electrical connectors were thoroughly studied using Moldflow simulations and optimized via a Box-Behnken experimental design under the Response Surface Methodology (RSM). Injection molding analyses were performed on Polyether-ether-ketone (PEEK), Polyetherimide (PEI), and Polyamide-imide (PAI) polymers using the MS3102A 16S-1P electrical connector model. In the conducted simulations, the melt temperature, injection time, and mold open time were evaluated as three fundamental process parameters through multivariate analysis. The volumetric shrinkage, sink mark depth, residual stress, warpage, and surface temperature homogeneity were considered as the major output qualities. According to the results, the PAI material provided superior thermal stability with an average heat removal capacity of 0.127 kW, whereas the PEI material exhibited the most homogeneous cooling behavior with a surface temperature of 45.5 °C. The minimum warpage was found to be 0.254 mm, whereas the sink mark depth was recorded within the range of 0.018-0.031 mm and the rate of volume shrinkage was between 1.03% and 1.41% in the investigations. The PAI material gave the maximum residual stress of 81.9 MPa in oriented regions of the mold. This study fills a considerable gap in the field by investigating material choice and process parameter adjustments via multivariate analysis, particularly for decision making in the production of high-reliability electrical components.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182465\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182465","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Simulation-Based Analysis and Optimization of High-Performance Dielectric Strength Polymers in the Injection Molding of Electrical Connectors.
In this research, the thermal and structural responses of high-performance dielectric strength polymers in the injection molding process for multi-pin electrical connectors were thoroughly studied using Moldflow simulations and optimized via a Box-Behnken experimental design under the Response Surface Methodology (RSM). Injection molding analyses were performed on Polyether-ether-ketone (PEEK), Polyetherimide (PEI), and Polyamide-imide (PAI) polymers using the MS3102A 16S-1P electrical connector model. In the conducted simulations, the melt temperature, injection time, and mold open time were evaluated as three fundamental process parameters through multivariate analysis. The volumetric shrinkage, sink mark depth, residual stress, warpage, and surface temperature homogeneity were considered as the major output qualities. According to the results, the PAI material provided superior thermal stability with an average heat removal capacity of 0.127 kW, whereas the PEI material exhibited the most homogeneous cooling behavior with a surface temperature of 45.5 °C. The minimum warpage was found to be 0.254 mm, whereas the sink mark depth was recorded within the range of 0.018-0.031 mm and the rate of volume shrinkage was between 1.03% and 1.41% in the investigations. The PAI material gave the maximum residual stress of 81.9 MPa in oriented regions of the mold. This study fills a considerable gap in the field by investigating material choice and process parameter adjustments via multivariate analysis, particularly for decision making in the production of high-reliability electrical components.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.