Yichao Liu, Peter Fransson, Julian Heidecke, Prasad Liyanage, Jonas Wallin, Joacim Rocklöv
{"title":"预测斯里兰卡登革热时空格局的可解释协变量区室模型。","authors":"Yichao Liu, Peter Fransson, Julian Heidecke, Prasad Liyanage, Jonas Wallin, Joacim Rocklöv","doi":"10.1371/journal.pcbi.1013540","DOIUrl":null,"url":null,"abstract":"<p><p>A majority of all infectious diseases manifest some climate-sensitivity. However, many of those sensitivities are not well understood as meteorological drivers of infectious diseases co-occur with other drivers exhibiting complex non-linear influences and feedback. This makes it hard to dissect their individual contributions. Here we apply a novel deep learning Explainable AI (XAI) compartment model with covariate drivers and dynamic feedback to predict and explain the dengue incidence across Sri Lanka. We compare the compartmental Susceptible-Exposed-Infected-Recovered (SEIR) model to a deep learning model without a compartmental structure. We find that the covariate compartmental hybrid model performs better and can describe drivers of the dengue spatiotemporal incidence over time. The strongest drivers in our model in order of importance are precipitation, socio-demographics, and normalized vegetation index. The novel method demonstrated can be used to leverage known infectious disease dynamics while accounting for the influence of other drivers and different population immunity contexts. While allowing for interpretation of the covariate driver influences, the approach bridges the gap between dynamical compartmental and data driven dynamical models.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 9","pages":"e1013540"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500091/pdf/","citationCount":"0","resultStr":"{\"title\":\"An explainable covariate compartmental model for predicting the spatio-temporal patterns of dengue in Sri Lanka.\",\"authors\":\"Yichao Liu, Peter Fransson, Julian Heidecke, Prasad Liyanage, Jonas Wallin, Joacim Rocklöv\",\"doi\":\"10.1371/journal.pcbi.1013540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A majority of all infectious diseases manifest some climate-sensitivity. However, many of those sensitivities are not well understood as meteorological drivers of infectious diseases co-occur with other drivers exhibiting complex non-linear influences and feedback. This makes it hard to dissect their individual contributions. Here we apply a novel deep learning Explainable AI (XAI) compartment model with covariate drivers and dynamic feedback to predict and explain the dengue incidence across Sri Lanka. We compare the compartmental Susceptible-Exposed-Infected-Recovered (SEIR) model to a deep learning model without a compartmental structure. We find that the covariate compartmental hybrid model performs better and can describe drivers of the dengue spatiotemporal incidence over time. The strongest drivers in our model in order of importance are precipitation, socio-demographics, and normalized vegetation index. The novel method demonstrated can be used to leverage known infectious disease dynamics while accounting for the influence of other drivers and different population immunity contexts. While allowing for interpretation of the covariate driver influences, the approach bridges the gap between dynamical compartmental and data driven dynamical models.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 9\",\"pages\":\"e1013540\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12500091/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013540\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013540","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An explainable covariate compartmental model for predicting the spatio-temporal patterns of dengue in Sri Lanka.
A majority of all infectious diseases manifest some climate-sensitivity. However, many of those sensitivities are not well understood as meteorological drivers of infectious diseases co-occur with other drivers exhibiting complex non-linear influences and feedback. This makes it hard to dissect their individual contributions. Here we apply a novel deep learning Explainable AI (XAI) compartment model with covariate drivers and dynamic feedback to predict and explain the dengue incidence across Sri Lanka. We compare the compartmental Susceptible-Exposed-Infected-Recovered (SEIR) model to a deep learning model without a compartmental structure. We find that the covariate compartmental hybrid model performs better and can describe drivers of the dengue spatiotemporal incidence over time. The strongest drivers in our model in order of importance are precipitation, socio-demographics, and normalized vegetation index. The novel method demonstrated can be used to leverage known infectious disease dynamics while accounting for the influence of other drivers and different population immunity contexts. While allowing for interpretation of the covariate driver influences, the approach bridges the gap between dynamical compartmental and data driven dynamical models.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.