Tran Minh The Uyen, Hai Nguyen Le Dang, Van-Thuc Nguyen, Minh-Tai Le, Nguyen Van Son, Thanh Trung Do, Le Quang Linh, Vu Manh Hoang, Phi Hoang Minh, Pham Son Minh
{"title":"聚合物材料注射成型柔顺恒力矩机构的计算与实验优化。","authors":"Tran Minh The Uyen, Hai Nguyen Le Dang, Van-Thuc Nguyen, Minh-Tai Le, Nguyen Van Son, Thanh Trung Do, Le Quang Linh, Vu Manh Hoang, Phi Hoang Minh, Pham Son Minh","doi":"10.3390/polym17182505","DOIUrl":null,"url":null,"abstract":"<p><p>In this research, we explore the computational and experimental optimization of compliant constant-torque mechanisms (CTMs) fabricated via injection molding using polymeric materials. We investigate how geometric variations influence the torsional strength of CTMs through numerical simulation, experimental validation, and artificial neural network (ANN) modeling. Four different geometries with the same overall dimensions were designed and analyzed to quantify their mechanical performance. The results reveal that the geometric configuration significantly affected the torsional behavior of the CTMs, with circular cross-sections demonstrating superior strength. Moreover, the ANN model exhibited a high prediction accuracy and minimal relative errors, closely aligning with the experimental outcomes. Despite this, discrepancies between our numerical and experimental results suggest that further refinements in material modeling and manufacturing processes are warranted. In this paper, we emphasize the importance of integrating computational (CAE), artificial neural networks (ANNs) and experimental techniques for optimizing polymer-based CTMs. CAE simulations for Model 4 showed a constant-torque section from 23-44 degrees with 0.142 N·m torque, while experimental and ANN results indicated a longer range (20-45/46 degrees) with higher torque values (0.164 N·m). Experimental and ANN predictions for Model 4 showed an approximate 97% similarity. While these findings represent a foundational step, the characteristics of polymer CTMs suggest potential relevance for advancing applications in precision engineering, biomedical devices, and soft robotics, pending further application-specific validation.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473815/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational and Experimental Optimization of Injection-Molded Compliant Constant-Torque Mechanisms in Polymeric Materials.\",\"authors\":\"Tran Minh The Uyen, Hai Nguyen Le Dang, Van-Thuc Nguyen, Minh-Tai Le, Nguyen Van Son, Thanh Trung Do, Le Quang Linh, Vu Manh Hoang, Phi Hoang Minh, Pham Son Minh\",\"doi\":\"10.3390/polym17182505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this research, we explore the computational and experimental optimization of compliant constant-torque mechanisms (CTMs) fabricated via injection molding using polymeric materials. We investigate how geometric variations influence the torsional strength of CTMs through numerical simulation, experimental validation, and artificial neural network (ANN) modeling. Four different geometries with the same overall dimensions were designed and analyzed to quantify their mechanical performance. The results reveal that the geometric configuration significantly affected the torsional behavior of the CTMs, with circular cross-sections demonstrating superior strength. Moreover, the ANN model exhibited a high prediction accuracy and minimal relative errors, closely aligning with the experimental outcomes. Despite this, discrepancies between our numerical and experimental results suggest that further refinements in material modeling and manufacturing processes are warranted. In this paper, we emphasize the importance of integrating computational (CAE), artificial neural networks (ANNs) and experimental techniques for optimizing polymer-based CTMs. CAE simulations for Model 4 showed a constant-torque section from 23-44 degrees with 0.142 N·m torque, while experimental and ANN results indicated a longer range (20-45/46 degrees) with higher torque values (0.164 N·m). Experimental and ANN predictions for Model 4 showed an approximate 97% similarity. While these findings represent a foundational step, the characteristics of polymer CTMs suggest potential relevance for advancing applications in precision engineering, biomedical devices, and soft robotics, pending further application-specific validation.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473815/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182505\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182505","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Computational and Experimental Optimization of Injection-Molded Compliant Constant-Torque Mechanisms in Polymeric Materials.
In this research, we explore the computational and experimental optimization of compliant constant-torque mechanisms (CTMs) fabricated via injection molding using polymeric materials. We investigate how geometric variations influence the torsional strength of CTMs through numerical simulation, experimental validation, and artificial neural network (ANN) modeling. Four different geometries with the same overall dimensions were designed and analyzed to quantify their mechanical performance. The results reveal that the geometric configuration significantly affected the torsional behavior of the CTMs, with circular cross-sections demonstrating superior strength. Moreover, the ANN model exhibited a high prediction accuracy and minimal relative errors, closely aligning with the experimental outcomes. Despite this, discrepancies between our numerical and experimental results suggest that further refinements in material modeling and manufacturing processes are warranted. In this paper, we emphasize the importance of integrating computational (CAE), artificial neural networks (ANNs) and experimental techniques for optimizing polymer-based CTMs. CAE simulations for Model 4 showed a constant-torque section from 23-44 degrees with 0.142 N·m torque, while experimental and ANN results indicated a longer range (20-45/46 degrees) with higher torque values (0.164 N·m). Experimental and ANN predictions for Model 4 showed an approximate 97% similarity. While these findings represent a foundational step, the characteristics of polymer CTMs suggest potential relevance for advancing applications in precision engineering, biomedical devices, and soft robotics, pending further application-specific validation.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.